Unlabelled: Natural transformation (NT) represents one of the major modes of horizontal gene transfer in bacterial species. During NT, cells can take up free DNA from the environment and integrate it into their genome by homologous recombination. While NT has been studied for >90 years, the molecular details underlying this recombination remain poorly understood.
View Article and Find Full Text PDFDNA is the major target of radiation therapy of malignant tumors. Ionizing radiation (IR) induces a variety of DNA lesions, including chemically modified bases and strand breaks. The use of proton beam therapy for cancer treatment is ramping up, as it is expected to reduce normal tissue damage.
View Article and Find Full Text PDFThe DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA.
View Article and Find Full Text PDFCells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way.
View Article and Find Full Text PDFOne of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation.
View Article and Find Full Text PDFThe ComFC protein is essential for natural transformation, a process that plays a major role in the spread of antibiotic resistance genes and virulence factors across bacteria. However, its role remains largely unknown. Here, we show that Helicobacter pylori ComFC is involved in DNA transport through the cell membrane, and is required for the handling of the single-stranded DNA once it is delivered into the cytoplasm.
View Article and Find Full Text PDFIn solid cancers, high expression of the cellular prion protein (PrPC) is associated with stemness, invasiveness, and resistance to chemotherapy, but the role of PrPC in tumor response to radiotherapy is unknown. Here, we show that, in neuroblastoma, breast, and colorectal cancer cell lines, PrPC expression is increased after ionizing radiation (IR) and that PrPC deficiency increases radiation sensitivity and decreases radiation-induced radioresistance in tumor cells. In neuroblastoma cells, IR activates ATM that triggers TAK1-dependent phosphorylation of JNK and subsequent activation of the AP-1 transcription factor that ultimately increases PRNP promoter transcriptional activity through an AP-1 binding site in the PRNP promoter.
View Article and Find Full Text PDFToxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood.
View Article and Find Full Text PDFThe most frequent DNA lesion resulting from an oxidative stress is 7,8-dihydro-8-oxoguanine (8-oxoG). 8-oxoG is a premutagenic base modification due to its capacity to pair with adenine. Thus, the repair of 8-oxoG is critical for the preservation of the genetic information.
View Article and Find Full Text PDFBackground: Functional genomics employs several experimental approaches to investigate gene functions. High-throughput techniques, such as loss-of-function screening and transcriptome profiling, allow to identify lists of genes potentially involved in biological processes of interest (so called hit list). Several computational methods exist to analyze and interpret such lists, the most widespread of which aim either at investigating of significantly enriched biological processes, or at extracting significantly represented subnetworks.
View Article and Find Full Text PDFOne of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1.
View Article and Find Full Text PDFFollowing publication of the original article [1], the authors notified us of an error in the presentation of Fig. 6G.
View Article and Find Full Text PDFHighly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors.
View Article and Find Full Text PDFRepair of two major forms of DNA damage, single strand breaks and base modifications, are dependent on XRCC1. XRCC1 orchestrates these repair processes by temporally and spatially coordinating interactions between several other repair proteins. Here we show that XRCC1 contains a central DNA binding domain (CDB, residues 219-415) encompassing its first BRCT domain.
View Article and Find Full Text PDFTranscription-coupled nucleotide excision repair factor Cockayne syndrome protein B (CSB) was suggested to function in the repair of oxidative DNA damage. However thus far, no clear role for CSB in base excision repair (BER), the dedicated pathway to remove abundant oxidative DNA damage, could be established. Using live cell imaging with a laser-assisted procedure to locally induce 8-oxo-7,8-dihydroguanine (8-oxoG) lesions, we previously showed that CSB is recruited to these lesions in a transcription-dependent but NER-independent fashion.
View Article and Find Full Text PDFAccumulation of 8-oxoguanine (8-oxoG) in mitochondrial DNA and mitochondrial dysfunction have been observed in cells deficient for the DNA glycosylase OGG1 when exposed to oxidative stress. In human cells, up to eight mRNAs for OGG1 can be generated by alternative splicing and it is still unclear which of them codes for the protein that ensures the repair of 8-oxoG in mitochondria. Here, we show that the α-OGG1 isoform, considered up to now to be exclusively nuclear, has a functional mitochondrial-targeting sequence and is imported into mitochondria.
View Article and Find Full Text PDFThe Phospholipase D (PLD) superfamily of proteins includes a group of enzymes with nuclease activity on various nucleic acid substrates. Here, with the aim of better understanding the substrate specificity determinants in this subfamily, we have characterised the enzymatic activity and the crystal structure of NucT, a nuclease implicated in Helicobacter pylori purine salvage and natural transformation and compared them to those of its bacterial and mammalian homologues. NucT exhibits an endonuclease activity with a strong preference for single stranded nucleic acids substrates.
View Article and Find Full Text PDFMotivation: Incorporating gene interaction data into the identification of 'hit' genes in genomic experiments is a well-established approach leveraging the 'guilt by association' assumption to obtain a network based hit list of functionally related genes. We aim to develop a method to allow for multivariate gene scores and multiple hit labels in order to extend the analysis of genomic screening data within such an approach.
Results: We propose a Markov random field-based method to achieve our aim and show that the particular advantages of our method compared with those currently used lead to new insights in previously analysed data as well as for our own motivating data.
Helicobacter pylori chronically colonises half of the world's human population and is the main cause of ulcers and gastric cancers. Its prevalence and the increase in antibiotic resistance observed recently reflect the high genetic adaptability of this pathogen. Together with high mutation rates and an efficient DNA recombination system, horizontal gene transfer through natural competence makes of H.
View Article and Find Full Text PDFEndogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses.
View Article and Find Full Text PDFNatural transformation is a potent driver for genetic diversification in bacterial populations. It involves exogenous DNA binding, uptake, transport and internalization into the cytoplasm, where DNA can be processed and integrated into the host chromosome. Direct visualisation of transforming DNA (tDNA) has been limited to its binding to the surface or, in the case of Gram-negative species, to its entrance into the periplasm.
View Article and Find Full Text PDF