Publications by authors named "Radian Popescu"

This article represents the first foray into investigating the consequences of various material combinations on the short-wave infrared (SWIR, 1000-2000 nm) performance of Tm-based core-shell nanocrystals (NCs) above 1600 nm. In total, six different material combinations involving two different types of SWIR-emitting core NCs (α-NaTmF and LiTmF) combined with three different protecting shell materials (α-NaYF, CaF, and LiYF) have been synthesized. All corresponding homo- and heterostructured NCs have been meticulously characterized by powder X-ray diffraction and electron microscopy techniques.

View Article and Find Full Text PDF

Zerovalent scandium, zirconium, hafnium, and manganese nanoparticles are prepared by reduction of ScCl, ZrCl, HfCl, and MnCl with lithium or sodium naphthalenide in a one-pot, liquid-phase synthesis. Small-sized monocrystalline nanoparticles are obtained with diameters of 2.4 ± 0.

View Article and Find Full Text PDF

The upconversion phenomenon allows for the emission of nanoparticles (NPs) under excitation with near-infrared (NIR) light. Such property is demanded in biology and medicine to detect or treat diseases such as tumours. The transparency of biological systems for NIR light is limited to three spectral ranges, called biological windows.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is a powerful and rapidly growing tomographic imaging technique that allows for the non-invasive visualization of superparamagnetic nanoparticles (NPs) in living matter. Despite its potential for a wide range of applications, the intrinsic quantitative nature of MPI has not been fully exploited in biological environments. In this study, a novel NP architecture that overcomes this limitation by maintaining a virtually unchanged effective relaxation (Brownian plus Néel) even when immobilized is presented.

View Article and Find Full Text PDF

Aluminium nanoparticles, Al(0), are obtained liquid-phase synthesis at 25 °C. Accordingly, AlBr is reduced by lithium naphthalenide ([LiNaph]) in toluene in the presence of ,,','-tetramethylethylenediamine (TMEDA). The Al(0) nanoparticles are small (5.

View Article and Find Full Text PDF

Zerovalent samarium nanoparticles (1.7 ± 0.2 nm in size) are used as the starting material to prepare single crystals of the novel polynuclear samarium oxo cluster [SmO(cbz)(thf)]·2CH.

View Article and Find Full Text PDF

Hydrogen (H) fuel production from hazardous contaminants is not only of economic importance but also of significance for the environment and health. Hydrogen production is exemplified in this work by using bismuth sulfide (BiS) sandwiched in between zinc sulfide (ZnS) and zinc oxide (ZnO) as dual-heterojunction photoelectrode to photoelectrochemically extract H from sulfide- and sulfite-containing wastewater, which is emitted in enormous quantities from the petrochemical industries. The H evolution rate over the ZnS/BiS/ZnO photoelectrode under solar illumination amounts to 112.

View Article and Find Full Text PDF

Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and selective reactive oxygen species (ROS) production in cancer cells.

View Article and Find Full Text PDF

Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale.

View Article and Find Full Text PDF

Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications. Here, we first devised a route to achieve the stable electrostatic binding of carbon dots to multi- or single-walled carbon nanotubes, as confirmed by several experimental observations.

View Article and Find Full Text PDF

The first liquid-phase synthesis of high-quality, small-sized rare-earth metal nanoparticles (1-3 nm)-ranging from lanthanum as one of the largest (187 pm) to scandium as the smallest (161 pm) rare-earth metal-is shown. Size, oxidation state, and reactivity of the nanoparticles are examined (e.g.

View Article and Find Full Text PDF

TiN and ZnSiN nanoparticles are obtained via a novel pyridine-based synthesis route. This one-pot liquid-phase route strictly avoids all oxygen sources (including starting materials, surface functionalization, solvents), which is highly relevant in regard of the material purity and material properties. Colloidally stable suspensions of crystalline, small-sized TiN (5.

View Article and Find Full Text PDF

Advanced quantitative TEM/EDXS methods were used to characterize different ultrastructures of magnetic Fe-Au core-shell nanoparticles formed by laser ablation in liquids. The findings demonstrate the presence of Au-rich alloy shells with varying composition in all structures and elemental bcc Fe cores. The identified structures are metastable phases interpreted by analogy to the bulk phase diagram.

View Article and Find Full Text PDF

GaN nanoparticles, 3-8 nm in diameter, are prepared by a microwave-assisted reaction of GaCl3 and KNH2 in ionic liquids. Instantaneously after the liquid-phase synthesis, the β-GaN nanoparticles are single-crystalline. The band gap is blue-shifted by 0.

View Article and Find Full Text PDF

Nanoporous, high-purity magnesium nitride (Mg3N2) was synthesized with a liquid ammonia-based process, for potential applications in optoelectronics, gas separation and catalysis, since these applications require high material purity and crystallinity, which has seldom been demonstrated in the past. One way to evaluate the degree of crystalline near-range order and atomic environment is electron energy-loss spectroscopy (EELS) in a transmission electron microscope. However, there are hardly any data on Mg3N2, which makes identification of electron energy-loss near-edge structure (ELNES) features difficult.

View Article and Find Full Text PDF

Garnet type solid electrolytes are promising candidates for replacing the flammable liquid electrolytes conventionally used in Li-ion batteries. Al-doped LiLaZrO (LLZO) is synthesized using nebulized spray pyrolysis and field assisted sintering technology (FAST), a novel synthesis route ensuring the preparation of samples with a homogeneous elemental distribution and dense ceramic electrolytes. Ceramic preparation utilizing field assisted sintering, in particular the applied pressure, has significant influence on the material structure, microstrain, and thereby its electrochemical performance.

View Article and Find Full Text PDF

Anisotropic growth of Cu O crystals deposited on an indium-doped tin oxide-coated glass substrate through facile electrodeposition and low-temperature calcination results in favorable solar photoelectrochemical water splitting. XRD, TEM, and SEM reveal that appreciable oxygen vacancies are populated in the Cu O crystals with a highly branched dendritic thin film morphology, which are further substituted by Cu atoms to form Cu antisite defects exclusively along the [111] direction. The post-thermal treatment presumably accelerates such migration of the lattice imperfections, favoring the exposure of the catalytically active (111) facets.

View Article and Find Full Text PDF

A time-resolved series of high-resolution transmission electron microscopy (HRTEM) images are used to monitor phase and morphology transformation of rod-like and spherical particles with the initial orthorhombic InOOH phase in situ under continuous illumination with high-energy electrons in a transmission electron microscope. For both particle types, the electron-beam irradiation induces a fast InOOH to rh-InO decomposition accompanied by the formation of voids within the particle/rod center. After illumination time intervals of about 1-2 min (i.

View Article and Find Full Text PDF

The production of upconverting nanostructures with tailored optical properties is of major technological interest, and rapid progress toward the realization of such production has been made in recent years. Ultimately, accurate understanding of nanostructure organization will lead to design rules for accurately tailoring optical properties. Here, the context of open questions still of general importance to the upconversion and nanocrystal communities is presented, with a particular emphasis on the structure-property relationships of core-shell upconverting nanocrystals.

View Article and Find Full Text PDF

Carbon nanodots (CDs) are a novel family of nanomaterials exhibiting unique optical properties. In particular, their bright and tunable fluorescence redefines the paradigm of carbon as a "black" material and is considered very appealing for many applications. While the field keeps growing, understanding CDs fundamental properties and relating them to their variable structures becomes more and more critical.

View Article and Find Full Text PDF

Frustrated Lewis pairs (FLPs) created by sterically hindered Lewis acids and Lewis bases have shown their capacity for capturing and reacting with a variety of small molecules, including H and CO, and thereby creating a new strategy for CO reduction. Here, the photocatalytic CO reduction behavior of defect-laden indium oxide (InO (OH) ) is greatly enhanced through isomorphous substitution of In with Bi, providing fundamental insights into the catalytically active surface FLPs (i.e.

View Article and Find Full Text PDF

Full-spectrum utilization of diffusive solar energy by a photocatalyst for environmental remediation and fuel generation has long been pursued. In contrast to tremendous efforts in the UV-to-VIS light regime of the solar spectrum, the NIR and IR areas have been barely addressed although they represent about 50% of the solar flux. Here we put forward a biomimetic photocatalyst blueprint that emulates the growth pattern of a natural plant-a peapod-to address this issue.

View Article and Find Full Text PDF

Gadolinium (Gd) and uranium (U) nanoparticles are prepared via lithium naphthalenide ([LiNaph])-driven reduction in tetrahydrofuran (THF) using GdCl and UCl, respectively, as low-cost starting materials. The as-prepared Gd and U suspensions are colloidally stable and contain metal nanoparticles with diameters of 2.5 ± 0.

View Article and Find Full Text PDF

Development of nanoparticles for super-resolution imaging (sriNPs) can greatly enrich the toolbox of robust optical probes for biological studies. Moreover, sriNPs enable us to monitor the behavior of engineered nanomaterials in complex biological environments with high spatial resolution, which is important for advancing our understanding of nano-bio interactions. Up to now, reports on sriNPs have been scarce.

View Article and Find Full Text PDF