Publications by authors named "Radhika Shiradkar"

The large consumer market has made cellphone lens modules available at low-cost and in high-quality. In a conventional cellphone camera, the lens module is used to demagnify the scene onto the image plane of the camera, where image sensor is located. In this work, we report a 3D-printed high-resolution Fourier ptychographic microscope, termed FPscope, which uses a cellphone lens in a reverse manner.

View Article and Find Full Text PDF

Fluorescence microscopy plays a vital role in modern biological research and clinical diagnosis. Here, we report an imaging approach, termed pattern-illuminated Fourier ptychography (FP), for fluorescence imaging beyond the diffraction limit of the employed optics. This approach iteratively recovers a high-resolution fluorescence image from many pattern-illuminated low-resolution intensity measurements.

View Article and Find Full Text PDF

Information multiplexing is important for biomedical imaging and chemical sensing. In this paper, we report a microscopy imaging technique, termed state-multiplexed Fourier ptychography (FP), for information multiplexing and coherent-state decomposition. Similar to a typical Fourier ptychographic setting, we use an array of light sources to illuminate the sample from different incident angles and acquire corresponding low-resolution images using a monochromatic camera.

View Article and Find Full Text PDF

We report an imaging scheme, termed aperture-scanning Fourier ptychography, for 3D refocusing and super-resolution macroscopic imaging. The reported scheme scans an aperture at the Fourier plane of an optical system and acquires the corresponding intensity images of the object. The acquired images are then synthesized in the frequency domain to recover a high-resolution complex sample wavefront; no phase information is needed in the recovery process.

View Article and Find Full Text PDF

Fourier ptychography (FP) is an imaging technique that applies angular diversity functions for high-resolution complex image recovery. The FP recovery routine switches between two working domains: the spectral and spatial domains. In this paper, we investigate the spectral-spatial data redundancy requirement of the FP recovery process.

View Article and Find Full Text PDF