Publications by authors named "Radhika Koranne"

HDAC inhibitors are an attractive class of cytotoxic agents for the design of hybrid molecules. Several HDAC hybrids have emerged over the years, but none combines HDAC inhibition with ferroptosis, a combination which is being extensively studied because it leads to enhanced cytotoxicity and attenuated neuronal toxicity. We combined the pharmacophores of and molecules to design the first-in-class dual mechanism hybrid molecules, which induce ferroptosis and inhibit HDAC proteins.

View Article and Find Full Text PDF

We recently reported a new class of imidazole-based chalcones as potential antimitotic agents. In view of their promising cytotoxic activity, a comprehensive structure-activity relationship (SAR) of these compounds was undertaken focusing on four major structural variations: the length of the molecule, the Michael acceptor character, the nature and substitution pattern of ring B, and the nature of the amide functionality tethering ring B. These second-generation analogs (IBCs) demonstrated a superior bioactivity profile than the previously reported imidazole chalcones (referred to as IPEs).

View Article and Find Full Text PDF

C9ORF78 is a poorly characterized protein found in diverse eukaryotes. Previous work indicated overexpression of C9ORF78 in malignant tissues indicating a possible involvement in growth regulatory pathways. Additional studies in fission yeast and humans uncover a potential function in regulating the spliceosome.

View Article and Find Full Text PDF

Despite the advances in treatment strategies, cancer is still the second leading cause of death in the USA. A majority of the currently used cancer drugs have limitations in their clinical use due to poor selectivity, toxic side effects and multiple drug resistance, warranting the development of new anticancer drugs of different mechanisms of action. Here we describe the design, synthesis and initial biological evaluation of a new class of antimitotic agents that modulate tubulin polymerization.

View Article and Find Full Text PDF

Effective management of advanced cancer requires systemic treatment including small molecules that target unique features of aggressive tumor cells. At the same time, tumors are heterogeneous and current evidence suggests that a subpopulation of tumor cells, called tumor initiating or cancer stem cells, are responsible for metastatic dissemination, tumor relapse and possibly drug resistance. Classical apoptotic drugs are less effective against this critical subpopulation.

View Article and Find Full Text PDF