Publications by authors named "Radhakrishna Rao"

Consumption of alcohol has widespread effects on the human body. The organs that are most significantly impacted are the liver and digestive system. When alcohol is consumed, it is absorbed in the intestines and processed by the liver.

View Article and Find Full Text PDF

Introduction: The mechanism underlying radiation-induced gut microbiota dysbiosis is undefined. This study examined the effect of radiation on the intestinal Paneth cell α-defensin expression and its impact on microbiota composition and mucosal tissue injury and evaluated the radio-mitigative effect of human α-defensin 5 (HD5).

Methods: Adult mice were subjected to total body irradiation, and Paneth cell α-defensin expression was evaluated by measuring α-defensin mRNA by RT-PCR and α-defensin peptide levels by mass spectrometry.

View Article and Find Full Text PDF

Introduction: Chronic stress is co-morbid with alcohol use disorder that feedback on one another, thus impeding recovery from both disorders. Stress and the stress hormone corticosterone aggravate alcohol-induced intestinal permeability and liver damage. However, the mechanisms involved in compounding tissue injury by stress/corticosterone and alcohol are poorly defined.

View Article and Find Full Text PDF

Fetal alcohol spectrum disorders (FASDs) are associated with systemic inflammation and neurodevelopmental abnormalities. Several candidate genes were found to be associated with fetal alcohol exposure (FAE)-associated behaviors, but a sex-specific complete transcriptomic analysis was not performed at the adult stage. Recent studies have shown that they are regulated at the developmental stage.

View Article and Find Full Text PDF

Significance: Light is a good probe for studying the nanoscale-level structural or molecular-specific structural properties of brain cells/tissue due to stress, alcohol, or any other abnormalities. Chronic alcoholism during pregnancy, i.e.

View Article and Find Full Text PDF

Intestinal epithelial tight junction disruption is a primary contributing factor in alcohol-associated endotoxemia, systemic inflammation, and multiple organ damage. Ethanol and acetaldehyde disrupt tight junctions by elevating intracellular Ca. Here we identify TRPV6, a Ca-permeable channel, as responsible for alcohol-induced elevation of intracellular Ca, intestinal barrier dysfunction, and systemic inflammation.

View Article and Find Full Text PDF

Osmotic stress plays a crucial role in the pathogenesis of many gastrointestinal diseases. and epidermal growth factor (EGF) effects on the osmotic stress-induced epithelial junctional disruption and barrier dysfunction were investigated. Caco-2 cell monolayers were exposed to osmotic stress in the presence or absence of or EGF, and the barrier function was evaluated by measuring inulin permeability.

View Article and Find Full Text PDF

Corticosterone, the stress hormone, exacerbates alcohol-associated tissue injury, but the mechanism involved is unknown. We examined the role of the glucocorticoid receptor (GR) in corticosterone-mediated potentiation of alcohol-induced gut barrier dysfunction and systemic response. Hepatocyte-specific GR-deficient (GR ) and intestinal epithelial-specific GR-deficient (GR ) mice were fed ethanol, combined with corticosterone treatment.

View Article and Find Full Text PDF

Molecular specific photonics localization method, the inverse participation ratio (IPR) technique, is a powerful procedure to probe the nano- to submicron scales structural alterations in cells/tissues in their abnormalities due to chronic alcoholism using confocal imaging. Chronic alcoholism introduces abnormalities in brain cells/tissue at the nanoscale level that results in behavioural and psychological disorders which are not well understood. On the other hand, probiotics such as Lactobacillus plantarum enhances brain functions in chronic alcoholism.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by memory loss and cognitive decline, is a major cause of death and disability among the older population. Despite decades of scientific research, the underlying etiological triggers are unknown. Recent studies suggested that gut microbiota can influence AD progression; however, potential mechanisms linking the gut microbiota with AD pathogenesis remain obscure.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Phyllanthus species is extensively cultivated and used as edible fruits and herbal drugs. The Phyllanthus species are used extensively as ethnopharmacologically important materials in several countries, especially in Asia. Various Phyllanthus species are broadly used in the Ayurvedic system of medicine and deliberated as bitter, astringent, stomachic, diuretic, febrifuge, deobstruent, and antiseptic, and used for the treatment of digestive, genitourinary, respiratory, skin diseases, hepatopathy, jaundice, and renal calculus in India.

View Article and Find Full Text PDF

Alcohol use disorders are associated with altered stress responses, but the impact of stress or stress hormones on alcohol-associated tissue injury remain unknown. We evaluated the effects of chronic restraint stress on alcohol-induced gut barrier dysfunction and liver damage in mice. To determine whether corticosterone is the stress hormone associated with the stress-induced effects, we evaluated the effect of chronic corticosterone treatment on alcoholic tissue injury at the Gut-Liver-Brain (GLB) axis.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how chronic alcoholism affects nanoscale structural changes in cell nuclei during early carcinogenesis, highlighting the role of key cellular components like DNA and lipids.
  • Exposure to both alcohol and known carcinogens shows that while alcohol alone doesn’t alter normal cell nuclei significantly, it does increase structural disarray in precancerous cells.
  • Using advanced imaging techniques like transmission electron microscopy, the research concludes that alcohol accelerates the early stages of cancer development when combined with other carcinogenic factors.
View Article and Find Full Text PDF

Neuroinflammation is implicated in the pathogenesis of alcohol use disorders. We investigated the role of Gut-Brain interactions in alcohol-induced neuroinflammation by probiotic-mediated manipulation of intestinal dysbiosis in mice. Chronic ethanol feeding induced dysbiosis, as evidenced by an increase in Firmicutes/Bacteroidetes ratio and depletion of species in the colon.

View Article and Find Full Text PDF

The tight junction (TJ) and barrier function of colonic epithelium is highly sensitive to ionizing radiation. We evaluated the effect of lysophosphatidic acid (LPA) and its analog, Radioprotein-1, on γ-radiation-induced colonic epithelial barrier dysfunction using Caco-2 and m-IC cell monolayers in vitro and mice in vivo. Mice were subjected to either total body irradiation (TBI) or partial body irradiation (PBI-BM5).

View Article and Find Full Text PDF

Cellular CYP2E1 is well-known to mediate alcohol- (ALC) and acetaminophen- (APAP) induced toxicity in hepatic and extra-hepatic cells. Although exosomes have been gaining importance in understanding mechanism of intra- and inter-cellular communication, the functional role of drug metabolizing cytochrome P450 (CYP) enzymes in human plasma exosomes are yet to be explored. In our previous study, we reported that human plasma-derived exosomes contain substantial level of functional CYP2E1.

View Article and Find Full Text PDF

Chronic stress affects nano to microscale structures of the brain cells/tissues due to suppression of neural growths and reconnections, hence the neuronal activities. This results in depression, memory loss and even death of the brain cells. Our recently developed novel optical technique, partial wave spectroscopic microscopy has nanoscale sensitivity, and hence, can detect nanoscale changes in brain tissues due to stress.

View Article and Find Full Text PDF

Recent study indicated that glutamine prevents alcoholic tissue injury in mouse gut and liver. Here we investigated the potential role of Epidermal Growth Factor Receptor (EGFR) in glutamine-mediated prevention of ethanol-induced colonic barrier dysfunction, endotoxemia and liver damage. Wild-type and EGFR*Tg transgenic (expressing dominant negative EGFR) mice were fed 1-6% ethanol in Lieber-DeCarli diet.

View Article and Find Full Text PDF

Alcohol consumption has been shown to cause dysbiosis, but the mechanism involved in it is unknown. Recurrent colitis is known to induce expression of α-defensins in the colon, but the effect of alcohol consumption on it is not known. We investigated the effect of ethanol on α-defensin expression in the small intestine and colitis-induced expression in colon in mice.

View Article and Find Full Text PDF

Fetal alcohol spectrum disorders (FASD) are associated with social interaction behavior and gastrointestinal (GI) abnormalities. These abnormal behaviors and GI abnormalities overlap with autism spectrum disorder (ASD). We investigated the effect of fetal alcohol exposure (FAE) on social interaction deficits (hallmark of autism) in mice.

View Article and Find Full Text PDF

Pathogenesis of alcohol-related diseases such as alcoholic hepatitis involves gut barrier dysfunction, endotoxemia, and toxin-mediated cellular injury. Here we show that Lactobacillus plantarum not only blocks but also mitigates ethanol (EtOH)-induced gut and liver damage in mice. L.

View Article and Find Full Text PDF

The apical junctional complex (AJC), which includes tight junctions (TJs) and adherens junctions (AJs), determines the epithelial polarity, cell-cell adhesion and permeability barrier. An intriguing characteristic of a TJ is the dynamic nature of its multiprotein complex. Occludin is the most mobile TJ protein, but its significance in TJ dynamics is poorly understood.

View Article and Find Full Text PDF

Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging.

View Article and Find Full Text PDF

The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers and restraint stress-induced barrier dysfunction in mouse colon Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca by 1,2-bis-(-aminophenoxy)ethane-,,','-tetraacetic acid. Knockdown of Ca1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction.

View Article and Find Full Text PDF

Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption.

View Article and Find Full Text PDF