Publications by authors named "Radhakrishna M"

Protein folding is a complex process influenced by the primary sequence of amino acids. Early studies focused on understanding whether the specificity or the conservation of properties of amino acids was crucial for folding into secondary structures such as α-helices, β-sheets, turns, and coils. However, with the advent of artificial intelligence (AI) and machine learning (ML), the emphasis has shifted towards the precise nature and occurrence of specific amino acids.

View Article and Find Full Text PDF

Protein aggregation is a widespread phenomenon implicated in debilitating diseases like Alzheimer's, Parkinson's, and cataracts, presenting complex hurdles for the field of molecular biology. In this review, we explore the evolving realm of computational methods and bioinformatics tools that have revolutionized our comprehension of protein aggregation. Beginning with a discussion of the multifaceted challenges associated with understanding this process and emphasizing the critical need for precise predictive tools, we highlight how computational techniques have become indispensable for understanding protein aggregation.

View Article and Find Full Text PDF

Cataracts, a major cause of global blindness, contribute significantly to the overall prevalence of blindness. The opacification of the lens, resulting in cataract formation, primarily occurs due to the aggregation of crystallin proteins within the eye lens. Despite the high concentration of these crystallins, they remarkably maintain the lens transparency and refractive index.

View Article and Find Full Text PDF

Interprotein interactions between the partially unfolded states of D-crystallin (D-crys) protein are known to cause cataracts. Therefore, understanding the unfolding pathways of native D-crys is extremely crucial to delineate their aggregation mechanism. In this study, we have performed extensive all-atom Molecular Dynamics simulations with explicit solvent to understand the role of the critical residues that drive the stability of the motifs and domains of D-crys in its wild type and mutant forms.

View Article and Find Full Text PDF

Drug rash with eosinophilia and systemic symptoms syndrome (DRESS) is a potentially life-threatening, drug-induced, multi-organ system reaction. The most frequently involved organ is the liver, followed by the kidneys and lungs. Early detection and diagnosis followed by withdrawal of the offending agent is vital to minimise the associated morbidity and mortality, and a detailed drug history is vital to identify the causative drugs.

View Article and Find Full Text PDF

The prediction of disordered regions in proteins is crucial for understanding their functions, dynamics, and interactions. Intrinsically disordered proteins (IDPs) play a key role in many biological processes like cell signaling, recognition, and regulation, but experimentally determining these regions can be challenging due to their high mobility. To address this challenge, we present an algorithm called HydroDisPred (HDP).

View Article and Find Full Text PDF

The adsorption of green fluorescent protein (GFP) on silica surfaces has been the subject of growing interest due to its potential applications in various fields, including biotechnology and biomedicine. In this study, we used all-atom molecular dynamics simulations to investigate the charge-driven adsorption of wild type GFP and its supercharged variants on silica surfaces. The results showed that the positively charged variant of GFP adsorbed on the negatively charged silica surface with minimal loss in its secondary structure.

View Article and Find Full Text PDF

Drug rash with eosinophilia and systemic symptoms syndrome (DRESS syndrome) is a potentially life-threatening, drug-induced, multi-organ system reaction, the most frequently involved organ is liver, followed by the kidneys and lungs. Early detection and diagnosis followed by withdrawal of the offending agent is vital to minimise the associated morbidity and mortality. A detailed drug history is vital to identify the causative drugs.

View Article and Find Full Text PDF

Cationic helical peptides play a crucial role in applications such as anti-microbial and anticancer activity. The activity of these peptides directly correlates with their helicity. In this study, we have performed extensive all-atom molecular dynamics simulations of 25 Lysine-Leucine co-polypeptide sequences of varying charge density ( ) and patterns.

View Article and Find Full Text PDF

Grafting of spherical nanoparticles (NPs) with polymeric ligands has been an effective way of controlling the dispersion state of NPs either in the matrix or in solution. Despite the fast evolving synthesis techniques, it is still experimentally difficult to precisely control the position of tethers on the surface of NPs. At low grafting density, due to the surface anisotropy, a wide range of assemblies could be achieved depending on the position of the tethers on the NP surface.

View Article and Find Full Text PDF

The design of nanoparticles (NPs) that respond to external stimuli like pH, temperature, and electric or magnetic fields has found immense interest in various fields of nanotechnology like nanomedicine, drug delivery, and cancer therapy. Nanoparticles grafted with polymeric ligands have been extensively used as building blocks in the directed self assembly of nanoparticles. These moieties not only assemble into various morphologies but also respond to a wide range of external stimuli.

View Article and Find Full Text PDF

DNA mediated directed self assembly of gold nanoparticles (AuNPs) has garnered immense interest due to its ability to precisely control supramolecular assemblies. Most experimental works have relied on utilizing the complementary interactions between the DNA strands to drive the self assembly of AuNPs grafted with DNA strands. In the present work, we have leveraged DNA-peptide interactions to tune the self assembly and stimuli responsive behavior of AuNPs grafted with single stranded DNA (ssDNA) and poly-L-lysine (PLL) chains.

View Article and Find Full Text PDF

Nanoparticle self-assembly in solution has gained immense interest due to the enhanced optical, chemical, magnetic, and electrical properties which manifest at the macroscale. Material properties in bulk are a direct consequence of the morphology of these nanoparticles in solutions. Precise control on the orientation, spatial arrangement, shape, size, composition, and control over the interactions of individual nanoparticles play a key role in enhancing their properties.

View Article and Find Full Text PDF

Protein folding is a very complex process and, so far, the mechanism of folding still intrigues the research community. Despite a large conformational space available (O(10) for a 100 amino acid residue), most proteins fold into their native state within a very short time. While small proteins fold relatively fast (a few microseconds) large globular proteins may take as long as several milliseconds to fold.

View Article and Find Full Text PDF

Mitochondrion, the powerhouse of the cells, has emerged as one of the unorthodox targets in anticancer therapy due to its involvement in several cellular functions. However, the development of small molecules for selective mitochondrial damage in cancer cells remained limited and less explored. To address this, in our work, we have synthesized a natural product inspired cyanine-based 3-methoxy pyrrole small molecule library by a concise strategy.

View Article and Find Full Text PDF

Purpose: The use of interventional pain management (IPM) modalities to alleviate chronic pain is increasing despite the lack of high-quality evidence. We undertook this survey to explore patterns, training, and attributes of IPM practice.

Methods: We administered a 32-item survey via seven Canadian physician member organizations, whose members were engaged in the management of chronic pain.

View Article and Find Full Text PDF

Reduced activity of enzymes upon immobilization is a major challenge for the industrial use of enzymes. Enzyme-surface interactions and interactions between the immobilized enzymes are thought of as primary reasons for the reduced activity. In the current paper, we study the thermal and structural stability of proteins on a patterned hydrophobic surface in the framework of a hydrophobic-polar lattice model.

View Article and Find Full Text PDF

Relative surface affinity between polymers and colloids is leveraged in many applications like filtration, adhesion, bio-sensing, etc. The surface affinity is governed by both enthalpic (relative interactions between the species and surface) and entropic (excluded volume) effects. Neglecting enthalpic effects, i.

View Article and Find Full Text PDF

Background: Disinfection of the prepared cavity can be a crucial step in the longevity of restorations. The objective of this study was to compare the antimicrobial action (AMA) of silver diamine fluoride-potassium iodide combination (SDF-KI) with 2% chlorhexidine gluconate (CHX) and to compare the alteration in bond strength and microleakage while using SDF-KI and CHX as cavity cleansers in resin-modified glass ionomer cement (RMGIC) restorations.

Materials And Methods: Samples were grouped as follows: Group 1: Polyacrylic acid (PAA), Group 2: CHX, Group 3: SDF-KI, and Group 4: Distilled water (CTRL).

View Article and Find Full Text PDF

Aggregation-induced-emission luminogens (AIEgens) have gained considerable attention as interesting tools for several biomedical applications, especially for bioimaging due to their brightness and photostability. Numerous AIEgens have been developed for lighting up the subcellular organelles to understand their forms and functions not only healthy but also unhealthy states, such as in cancer cells. However, there is lack of easily synthesizable, biocompatible small molecules for illuminating mitochondria (powerhouses) inside cells.

View Article and Find Full Text PDF

Study Design: Systematic review.

Objective: To determine the validity of the Hoffmann sign for the detection of degenerative cervical myelopathy (DCM) for patients presenting with cervical complaints.

Summary Of Background Data: While physical examination maneuvers are often used to diagnose DCM, no previous review has synthesized diagnostic accuracy data.

View Article and Find Full Text PDF

A simple fluorophore bearing a diethylaminocoumarin donor and a pyridinium acceptor was synthesized and utilized for the ultra-sensitive detection of heparin. The synthesized dicationic push-pull coumarin derivative emits strongly in the red-region (665 nm) and detects nanomolar concentrations (14.8 nM to 148 nM) of heparin in HEPES buffer and FBS serum solutions.

View Article and Find Full Text PDF