Publications by authors named "Radha Rangarajan"

Article Synopsis
  • - The rise of antibiotic-resistant bacterial infections worldwide calls for a commitment to developing new antibiotics, vaccines, and diagnostics, highlighting the inadequacy of the current drug development model that relies on significant profits.
  • - Public-private partnerships and publicly funded models are proposed to facilitate investment in antibiotics, making them more affordable and accessible, especially in low-income and middle-income countries.
  • - Improving access to antibiotics also requires better diagnostic practices and the use of vaccines to prevent infections, with the upcoming UN General Assembly meeting in 2024 serving as a crucial platform to rethink research and development strategies.
View Article and Find Full Text PDF

Non-communicable diseases are the leading cause of death and disability across India, including in the poorest states. Effective disease management, particularly for cardiovascular diseases, requires the tracking of several biochemical and physiological parameters over an extended period of time. Currently, patients must go to diagnostic laboratories and doctors' clinics or invest in individual point-of-care devices for measuring the required parameters.

View Article and Find Full Text PDF

. Rapid and accurate detection of carbapenem resistance is a critical requirement for the selection of appropriate therapy and initiation of infection control measures. Although several tests are available, their use is limited by one or more factors.

View Article and Find Full Text PDF

Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency.

View Article and Find Full Text PDF

The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin.

View Article and Find Full Text PDF

Although the mechanisms by which malaria parasites develop resistance to drugs are unclear, current knowledge suggests a main mechanism of resistance is the alteration of target enzymes by point mutation. In other organisms, defects in DNA mismatch repair have been linked to increased mutation rates and drug resistance. We have identified an unusual complement of mismatch repair genes in the Plasmodium genome.

View Article and Find Full Text PDF

The molecular mechanisms underlying gametocytogenesis in malaria parasites are not understood. Plasmodium falciparum cdc2-related kinase 1 (pfcrk-1), a gene that is expressed predominantly in gametocytes, bears homology to the PITSLRE subfamily of cyclin-dependent kinases and has been hypothesized to function as a negative regulator of the cell cycle. We attempted to knock-out pbcrk-1, the P.

View Article and Find Full Text PDF

Malaria infection is initiated when the insect vector injects Plasmodium sporozoites into a susceptible vertebrate host. Sporozoites rapidly leave the circulatory system to invade hepatocytes, where further development generates the parasite form that invades and multiplies within erythrocytes. Previous experiments have shown that the thrombospondin-related adhesive protein (TRAP) plays an important role in sporozoite infectivity for hepatocytes.

View Article and Find Full Text PDF

Differentiation of malaria parasites into sexual forms (gametocytes) in the vertebrate host and their subsequent development into gametes in the mosquito vector are crucial steps in the completion of the parasite's life cycle and transmission of the disease. The molecular mechanisms that regulate the sexual cycle are poorly understood. Although several signal transduction pathways have been implicated, a clear understanding of the pathways involved has yet to emerge.

View Article and Find Full Text PDF