Indian J Med Microbiol
January 2025
Background: Neonatal sepsis continues to be a leading cause of mortality among the NICU admitted neonates. The most common causative organisms have been proven to be hospital-acquired organisms.
Aims And Objectives: This study was planned with aim of understanding the pathological colonization of neonatal skin and associated risk factors as well as finding a possible correlation between blood culture isolates and neonatal skin colonizers and their antimicrobial resistance patterns.
The endophytic fungus, sp. L2D2 was isolated from the medicinal plant and has been assessed for extracellular enzyme production, plant growth promotion, antifungal, antibacterial, and antioxidant activities in vitro. The endophyte has been found to produce amylase, cellulose, and ammonia qualitatively.
View Article and Find Full Text PDFEukaryotic mRNAs are modified at the 5' end with a methylated guanosine (mG) that is attached to the transcription start site (TSS) nucleotide. The TSS nucleotide is 2'--methylated (Nm) by CMTR1 in organisms ranging from insects to human. In mammals, the TSS adenosine can be further -methylated by RNA polymerase II phosphorylated CTD-interacting factor 1 (PCIF1) to create mAm.
View Article and Find Full Text PDFArgonautes are small RNA-binding proteins, with some having small RNA-guided endonuclease (slicer) activity that cleaves target nucleic acids. One cardinal rule that is structurally defined is the inability of slicers to cleave target RNAs when nucleotide mismatches exist between the paired small RNA and the target at the cleavage site. Animal-specific PIWI clade Argonautes associate with PIWI-interacting RNAs (piRNAs) to silence transposable elements in the gonads, and this is essential for fertility.
View Article and Find Full Text PDFThe functional consequence of N-methyladenosine (mA) RNA modification is mediated by "reader" proteins of the YTH family. YTH domain-containing 2 (YTHDC2) is essential for mammalian fertility, but its molecular function is poorly understood. Here, we identify U-rich motifs as binding sites of YTHDC2 on 3' UTRs of mouse testicular RNA targets.
View Article and Find Full Text PDFMelanins are high molecular weight hydrophobic pigments which have gained popularity for their role in virulence against different pathogens. In the present study, we isolated and characterized the melanin pigment produced by a dark septate endophyte fungus Phoma sp. RDSE17, which was associated with the roots of an indigenous Oryza sativa cv.
View Article and Find Full Text PDFA rising proportion of older people has more demand on services including hospitals, retirement homes, and assisted living facilities. Regaining control of this population's expectations will pose new difficulties for lawmakers, medical professionals, and the society at large. Smart technology can help older people to have independent and fulfilling lives while still living safely and securely in the community.
View Article and Find Full Text PDFThe field experiment was conducted from March to June of 2017 in field conditions at the Institute of Agriculture and Animal Science (IAAS), Paklihawa Campus, Rupandehi, Nepal to evaluate the efficacy of botanicals, microbial, and chemical insecticide against Guenee. We assessed seven treatments including control in randomized complete block design with four replications and two sprays. The treatments evaluated for the management of were i) Jholmal, 250 ml/l of water ii) (Daman), 4 g/l water iii) Abamectin 5 % (Biotrine), 0.
View Article and Find Full Text PDFThe N-methyladenosine (mA) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an mA mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production.
View Article and Find Full Text PDFThe 5' end of eukaryotic mRNAs is protected by the mG-cap structure. The transcription start site nucleotide is ribose methylated (Nm) in many eukaryotes, whereas an adenosine at this position is further methylated at the N position (mA) by the mammalian Phosphorylated C-terminal domain (CTD)-interacting Factor 1 (PCIF1) to generate mAm. Here, we show that although the loss of cap-specific mAm in mice does not affect viability or fertility, the Pcif1 mutants display reduced body weight.
View Article and Find Full Text PDFDNA methylation is a major silencing mechanism of transposable elements (TEs). Here we report that TEX15, a testis-specific protein, is required for TE silencing. TEX15 is expressed in embryonic germ cells and functions during genome-wide epigenetic reprogramming.
View Article and Find Full Text PDFGarcia-Campos et al. describe MAZTER-seq, which deploys a sequence-specific, methylation-sensitive bacterial single-stranded ribonuclease MazF to provide nucleotide-resolution quantification of mA methylation sites. The study reveals many new sites and supports the idea of a predictable "mA code," where methylation levels are dictated primarily by local sequence at the site of methylation.
View Article and Find Full Text PDFPIWI proteins and their associated small RNAs, called PIWI-interacting RNAs (piRNAs), restrict transposon activity in animal gonads to ensure fertility. Distinct biogenesis pathways load piRNAs into the PIWI proteins MILI and MIWI2 in the mouse male embryonic germline. While most MILI piRNAs are derived via a slicer-independent pathway, MILI slicing loads MIWI2 with a series of phased piRNAs.
View Article and Find Full Text PDFInternal modification of RNAs with N-methyladenosine (mA) is a highly conserved means of gene expression control. While the METTL3/METTL14 heterodimer adds this mark on thousands of transcripts in a single-stranded context, the substrate requirements and physiological roles of the second mA writer METTL16 remain unknown. Here we describe the crystal structure of human METTL16 to reveal a methyltransferase domain furnished with an extra N-terminal module, which together form a deep-cut groove that is essential for RNA binding.
View Article and Find Full Text PDFN-methyladenosine (mA) is an essential internal RNA modification that is critical for gene expression control in most organisms. Proteins with a YTH domain recognize mA marks and are mediators of molecular functions like RNA splicing, mRNA decay, and translation control. Here we demonstrate that YTH domain-containing 2 (YTHDC2) is an mA reader that is essential for male and female fertility in mice.
View Article and Find Full Text PDFSmall RNAs called PIWI -interacting RNAs (piRNAs) are essential for transposon control and fertility in animals. Primary processing is the small RNA biogenesis pathway that uses long single-stranded RNA precursors to generate millions of individual piRNAs, but the molecular mechanisms that identify a transcript as a precursor are poorly understood. Here we demonstrate that artificial tethering of the piRNA biogenesis factor, Armi, to a transcript is sufficient to direct it into primary processing in Drosophila ovaries and in an ovarian cell culture model.
View Article and Find Full Text PDFSmall RNAs called PIWI-interacting RNAs (piRNAs) act as an immune system to suppress transposable elements in the animal gonads. A poorly understood adaptive pathway links cytoplasmic slicing of target RNA by the PIWI protein MILI to loading of target-derived piRNAs into nuclear MIWI2. Here we demonstrate that MILI slicing generates a 16-nt by-product that is discarded and a pre-piRNA intermediate that is used for phased piRNA production.
View Article and Find Full Text PDFPiwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs. piRNAs protect the genome integrity of the germline by silencing active transposable elements and are essential for germ cell development. Most piRNA pathway proteins are evolutionarily conserved.
View Article and Find Full Text PDFPIWI-interacting RNAs (piRNAs) guide PIWI proteins to suppress transposons in the cytoplasm and nucleus of animal germ cells, but how silencing in the two compartments is coordinated is not known. Here we demonstrate that endonucleolytic slicing of a transcript by the cytosolic mouse PIWI protein MILI acts as a trigger to initiate its further 5'→3' processing into non-overlapping fragments. These fragments accumulate as new piRNAs within both cytosolic MILI and the nuclear MIWI2.
View Article and Find Full Text PDFPIWI proteins and PIWI-interacting RNAs (piRNAs) mediate repression of transposons in the animal gonads. Primary processing converts long single-stranded RNAs into ∼30-nt piRNAs, but their entry into the biogenesis pathway is unknown. Here, we demonstrate that an RNA element at the 5' end of a piRNA cluster—which we termed piRNA trigger sequence (PTS)—can induce primary processing of any downstream sequence.
View Article and Find Full Text PDFPiwi-interacting RNAs (piRNAs) guide Piwi argonautes to their transposon targets for silencing. The highly conserved protein Maelstrom is linked to both piRNA biogenesis and effector roles in this pathway. One defining feature of Maelstrom is the predicted MAEL domain of unknown molecular function.
View Article and Find Full Text PDFPrecursors for most Piwi-interacting RNAs (piRNAs) are indistinguishable from other RNA polymerase II-transcribed long noncoding RNAs. So, it is currently unclear how they are recognized as substrates by the piRNA processing machinery that resides in cytoplasmic granules called nuage. In this issue, Castaneda et al (2014) reveal a role for the nuage component and nucleo-cytoplasmic shuttling protein Maelstrom in mouse piRNA biogenesis.
View Article and Find Full Text PDFPiwi-interacting RNAs (piRNAs) guide Piwi Argonautes to suppress transposon activity in animal gonads. Known piRNA populations are extremely complex, with millions of individual sequences present in a single organism. Despite this complexity, specific Piwi proteins incorporate piRNAs with distinct nucleotide- and transposon strand-biases (antisense or sense) of unknown origin.
View Article and Find Full Text PDFPiwi-interacting RNAs (piRNAs) are gonad-specific small RNAs that provide defense against transposable genetic elements called transposons. Our knowledge of piRNA biogenesis is sketchy, partly due to an incomplete inventory of the factors involved. Here, we identify Tudor domain-containing 12 (TDRD12; also known as ECAT8) as a unique piRNA biogenesis factor in mice.
View Article and Find Full Text PDFProg Mol Subcell Biol
April 2016
Recently, several lines of evidence have suggested that noncoding RNAs, which include both small and long noncoding RNAs (ncRNAs), contribute to a significant portion of the transcriptome in eukaryotic organisms. However, the functional significance of this wide-spread occurrence of ncRNAs, and in particular, the long ncRNAs (lncRNAs), for organismal development and differentiation is unclear. The available evidence from a subset of lncRNAs suggests that certain lncRNAs, and/or the act of their transcription, are involved in important biological functions at the transcriptional and posttranscriptional level.
View Article and Find Full Text PDF