Publications by authors named "Radha Narayanan"

There are two main classes of metallic nanoparticles: solid and hollow. Each type can be synthesized in different shapes and structures. Practical use of these nanoparticles depends on the properties they acquire on the nanoscale.

View Article and Find Full Text PDF

We report the use of gold nanorods as solution-based SERS substrates for the detection of ultralow-levels of three different dithiocarbamate fungicides: thiram, ferbam and ziram. Gold nanorods are attractive to use as SERS substrates due to the ability to tune the surface plasmon resonance of the nanoparticles to the laser excitation wavelength of the Raman spectrometer equipped with a 785 nm diode laser. The gold nanorods are synthesized using a seed-mediated growth method and characterized using UV-Visible spectroscopy, zeta potential, and TEM.

View Article and Find Full Text PDF

The reaction of amino groups of protein and the carbonyl groups of reducing sugar molecules, non-enzymatically induce a series of chemical reactions that form a heterogeneous group of compounds known as advanced glycation end products (AGEs). The accumulation of AGEs is associated with various disease conditions that include complications in diabetes, Alzheimer's disease and aging. The current study monitored the extent of non-enzymatic glycation of human serum albumin (HSA) in order to estimate the formation of HSA related AGEs in the presence of 2 nm gold nanoparticles.

View Article and Find Full Text PDF

We report the use of two different sizes of dogbone shaped gold nanoparticles as colloidal substrates for surface enhanced Raman spectroscopy (SERS) based detection of ultra-low levels of thiram, a dithiocarbamate fungicide. We demonstrate the ability to use a solution based, direct readout SERS method as a quantitative tool for the detection of ultra-low levels of thiram. The two different sizes of dogbone shaped gold nanoparticles are synthesized by using the seed-mediated growth method and characterized by using UV-visible spectroscopy and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Since metal nanoparticles have a high surface-to-volume ratio and very active surface atoms, they are very attractive catalysts for a wide variety of organic and inorganic reactions, compared to bulk catalysts. Metal nanoparticles suspended in colloidal solutions and those adsorbed onto bulk supports have been used as catalysts for a wide variety of carbon-carbon bond formation reactions such as the Suzuki and Heck cross-coupling reactions. This review article highlights some of the latest advances in the application of noble metal nanoparticles as catalysts for these two industrially important classes of cross-coupling reactions.

View Article and Find Full Text PDF
Article Synopsis
  • Bioanalytical science is rapidly expanding due to a growing need for sensitive detection methods in human and veterinary diagnostics, as well as for bioterrorism prevention and food safety.
  • The review focuses on the use of surface enhanced Raman scattering (SERS) technology for detecting proteins, viruses, and microorganisms in complex immunoassays.
  • Key components of the assay include the design of capture substrates and the use of gold nanoparticles modified with Raman-active materials and antibodies, known as extrinsic Raman labels (ERLs), which enhance signal detection and ensure specificity.
View Article and Find Full Text PDF

This paper reports on the characterization and preliminary comparison of gold nanoparticles of differing surface modification and shape when used as extrinsic Raman labels (ERLs) in high-sensitivity heterogeneous immunoassays based on surface enhanced Raman scattering (SERS). ERLs are gold nanoparticles coated with an adlayer of an intrinsically strong Raman scatterer, followed by a coating of a molecular recognition element (e.g.

View Article and Find Full Text PDF

Raman studies are conducted to understand the specific interactions between the individual reactants and the platinum nanoparticle surface during the nanocatalyzed electron transfer reaction between hexacyanoferrate (III) ions and thiosulfate ions. When Pt nanoparticles are added to the thiosulfate ion solution, a shift in the symmetric SS stretching mode is observed compared to the frequency observed for the free thiosulfate ions in solution, suggesting that binding to the Pt nanoparticle surface occurs via the S- ion. It is also observed that there are no shifts in the symmetric and asymmetric OSO bending or SO stretching frequencies.

View Article and Find Full Text PDF

While the nanocatalysis field has undergone an explosive growth during the past decade, there have been very few studies in the area of shape-dependent catalysis and the effect of the catalytic process on the shape and size of transition metal nanoparticles as well as their recycling potential. Metal nanoparticles of different shapes have different crystallographic facets and have different fraction of surface atoms on their corners and edges, which makes it interesting to study the effect of metal nanoparticle shape on the catalytic activity of various organic and inorganic reactions. Transition metal nanoparticles are attractive to use as catalysts due to their high surface-to-volume ratio compared to bulk catalytic materials, but their surface atoms could be so active that changes in the size and shape of the nanoparticles could occur during the course of their catalytic function, which could also affect their recycling potential.

View Article and Find Full Text PDF

In the Suzuki reaction between phenylboronic acid and iodobenzene catalyzed by palladium nanoparticles, our previous studies suggested that the phenylboronic acid adsorbs on the nanoparticle surface and then interacts with the iodobenzene that is present in solution. In the present study, FTIR is used to examine the change in the vibrational frequencies of phenylboronic acid in films with and without the addition of palladium nanoparticles. The large change in the B-O stretching frequency of phenylboronic acid from 1348 to 1376 cm(-1) in the presence of sodium acetate and palladium nanoparticles strongly suggests that the mode of binding of phenylboronic acid to the Pd nanoparticle surface involves a B-O-Pd type of bonding.

View Article and Find Full Text PDF

Dominantly tetrahedral shaped poly(vinylpyrrolidone)-platinum (PVP-Pt) nanoparticles are shown to catalyze the Suzuki reaction between phenylboronic acid and iodobenzene but are not as active as the spherical palladium nanoparticles studied previously. The dominantly tetrahedral PVP-Pt nanoparticles (55 +/- 4% regular tetrahedral, 22 +/- 2% distorted tetrahedral, and 23 +/- 2% spherical nanoparticles) are synthesized by using the hydrogen reduction method. The transmission electron microscopy (TEM) results show that a transformation of shape from tetrahedral to spherical Pt nanoparticles takes place 3 h into the first cycle of the reaction.

View Article and Find Full Text PDF

The shape distribution of the catalytic nanoparticles and the activation energy of the electron-transfer reaction between hexacyanoferrate (III) and thiosulfate ions were determined at different times during the course of the reaction. The activation energy is found to increase during the reaction when dominantly tetrahedral nanoparticles are used, decreases slightly when dominantly cubic nanoparticles are used, and remains almost unchanged when spherical nanoparticles are used. Corresponding changes in the shape of the tetrahedral and cubic, but not spherical, shape is observed.

View Article and Find Full Text PDF

The small size of nanoparticles makes them attractive in catalysis due to their large surface-to-volume ratio. However, being small raises questions about their stability in the harsh chemical environment in which these nanoparticles find themselves during their catalytic function. In the present work, we studied the Suzuki reaction between phenylboronic acid and iodobenzene catalyzed by PVP-Pd nanoparticles to investigate the effect of catalysis, recycling, and the different individual chemicals on the stability and catalytic activity of the nanoparticles during this harsh reaction.

View Article and Find Full Text PDF