Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.
View Article and Find Full Text PDFREV7 is a HORMA (Hop1, Rev7, Mad2) family adaptor protein best known as an accessory subunit of the translesion synthesis (TLS) DNA polymerase ζ (Polζ). In this role, REV7 binds REV3, the catalytic subunit of Polζ, by locking REV7-binding motifs (RBMs) in REV3 underneath the REV7 safety-belt loop. The same mechanism is used by REV7 to interact with RBMs from other proteins in DNA damage response (DDR) and mitosis.
View Article and Find Full Text PDFTranslesion synthesis (TLS) is a cellular mechanism through which actively replicating cells recruit specialized, low-fidelity DNA polymerases to damaged DNA to allow for replication past these lesions. REV1 is one of these TLS DNA polymerases that functions primarily as a scaffolding protein to organize the TLS heteroprotein complex and ensure replication occurs in the presence of DNA lesions. The C-Terminal domain of REV1 (REV1-CT) forms many protein-protein interactions (PPIs) with other TLS polymerases, making it essential for TLS function and a promising drug target for anti-cancer drug development.
View Article and Find Full Text PDFDNA damage tolerance (DDT) pathways enable cells to cope with a variety of replication blocks that threaten their ability to complete DNA replication. Helicase-like transcription factor (HLTF) plays a central role in the error-free DDT pathway, template switching (TS), by serving as a ubiquitin ligase to polyubiquitinate the DNA sliding clamp PCNA, which promotes TS initiation. HLTF also serves as an ATP-dependent DNA translocase facilitating replication fork remodeling.
View Article and Find Full Text PDFTranslesion synthesis (TLS) is an error-prone DNA damage tolerance mechanism used by actively replicating cells to copy past DNA lesions and extend the primer strand. TLS ensures that cells continue replication in the presence of damaged DNA bases, albeit at the expense of an increased mutation rate. Recent studies have demonstrated a clear role for TLS in rescuing cancer cells treated with first-line genotoxic agents by allowing them to replicate and survive in the presence of chemotherapy-induced DNA lesions.
View Article and Find Full Text PDFThe glioma-associated family of transcription factors (GLI) have emerged as a promising therapeutic target for a variety of human cancers. In particular, GLI1 plays a central role as a transcriptional regulator for multiple oncogenic signaling pathways, including the hedgehog (Hh) signaling pathway. We undertook a computational screening approach to identify small molecules that directly bind GLI1 for potential development as inhibitors of GLI-mediated transcription.
View Article and Find Full Text PDFRev1 is a protein scaffold of the translesion synthesis (TLS) pathway, which employs low-fidelity DNA polymerases for replication of damaged DNA. The TLS pathway helps cancers tolerate DNA damage induced by genotoxic chemotherapy, and increases mutagenesis in tumors, thus accelerating the onset of chemoresistance. TLS inhibitors have emerged as potential adjuvant drugs to enhance the efficacy of first-line chemotherapy, with the majority of reported inhibitors targeting protein-protein interactions (PPIs) of the Rev1 C-terminal domain (Rev1-CT).
View Article and Find Full Text PDFExpert Opin Investig Drugs
January 2021
Translesion synthesis (TLS) is a DNA damage tolerance mechanism that replaces the replicative DNA polymerase with a specialized, low-fidelity TLS DNA polymerase that can copy past DNA lesions during active replication. Recent studies have demonstrated a primary role for TLS in replicating past DNA lesions induced by first-line genotoxic agents, resulting in decreased efficacy and acquired chemoresistance. With this in mind, targeting TLS as a combination strategy with first-line genotoxic agents has emerged as a promising approach to develop a new class of anti-cancer adjuvant agents.
View Article and Find Full Text PDFBackground: Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the pork industry globally. PRRS is caused by PRRS virus (PRRSV). Currently there are no effective treatments against this swine disease.
View Article and Find Full Text PDFWhile loss-of-function mutations in the gene have been implicated as a driving force for a variety of pediatric brain tumors, as well as pancreatic neuroendocrine tumors, the role of ATRX in gene regulation and oncogenic development is not well-characterized. The ADD domain of ATRX (ATRX) localizes the protein to chromatin by specifically binding to the histone H3 tail. This domain is also a primary region that is mutated in these cancers.
View Article and Find Full Text PDFTranslesion synthesis (TLS) has emerged as a mechanism through which several forms of cancer develop acquired resistance to first-line genotoxic chemotherapies by allowing replication to continue in the presence of damaged DNA. Small molecules that inhibit TLS hold promise as a novel class of anticancer agents that can serve to enhance the efficacy of these front-line therapies. We previously used a structure-based rational design approach to identify the phenazopyridine scaffold as an inhibitor of TLS that functions by disrupting the protein-protein interaction (PPI) between the C-terminal domain of the TLS DNA polymerase Rev1 (Rev1-CT) and the Rev1 interacting regions (RIR) of other TLS DNA polymerases.
View Article and Find Full Text PDFThe Food and Drug Administration-approved antifungal agent, itraconazole (ITZ), has been increasingly studied for its novel biological properties. In particular, ITZ inhibits the hedgehog (Hh) signaling pathway and has the potential to serve as an anticancer chemotherapeutic against several Hh-dependent malignancies. We have extended our studies on ITZ analogues as Hh pathway inhibitors through the design, synthesis, and evaluation of novel des-triazole ITZ analogues that incorporate modifications to the triazolone/side chain region of the scaffold.
View Article and Find Full Text PDFInhibition of the hedgehog (Hh) signaling pathway has been validated as a therapeutic strategy to treat basal cell carcinoma and holds potential for several other forms of human cancer. Itraconazole and posaconazole are clinically useful triazole anti-fungals that are being repurposed as anti-cancer agents based on their ability to inhibit the Hh pathway. We have previously demonstrated that removal of the triazole from itraconazole does not affect its ability to inhibit the Hh pathway while abolishing its primary side effect, potent inhibition of Cyp3A4.
View Article and Find Full Text PDFTranslesion synthesis (TLS) is a mechanism of replication past damaged DNA through which multiple forms of human cancer survive and acquire resistance to first-line genotoxic chemotherapies. As such, TLS is emerging as a promising target for the development of a new class of anticancer agents. The C-terminal domain of the DNA polymerase Rev1 (Rev1-CT) mediates assembly of the functional TLS complex through protein-protein interactions (PPIs) with Rev1 interacting regions (RIRs) of several other TLS DNA polymerases.
View Article and Find Full Text PDFTranslesion synthesis (TLS) is a DNA damage tolerance mechanism that allows replicative bypass of DNA lesions, including DNA adducts formed by cancer chemotherapeutics. Previous studies demonstrated that suppression of TLS can increase sensitivity of cancer cells to first-line chemotherapeutics and decrease mutagenesis linked to the onset of chemoresistance, marking the TLS pathway as an emerging therapeutic target. TLS is mediated by a heteroprotein complex consisting of specialized DNA polymerases, including the Y-family DNA polymerase Rev1.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
June 2018
The binding affinity between the histone 3 (H3) tail and the ADD domain of ATRX (ATRX) increases with the subsequent addition of methyl groups on lysine 9 on H3. To improve our understanding of how the difference in methylation state affects binding between H3 and the ATRX, we adopted a metadynamic approach to explore the recognition mechanism between the two proteins and identify the key intermolecular interactions that mediate this protein-peptide interaction (PPI). The non-methylated H3 peptide is recognized only by the PHD finger of ATRX while mono-, di-, and trimethylated H3 is recognized by both the PHD and GATA-like zinc finger of the domain.
View Article and Find Full Text PDFTranslesion synthesis (TLS) is an important mechanism through which proliferating cells tolerate DNA damage during replication. The mutagenic Rev1/Polζ-dependent branch of TLS helps cancer cells survive first-line genotoxic chemotherapy and introduces mutations that can contribute to the acquired resistance so often observed with standard anticancer regimens. As such, inhibition of Rev1/Polζ-dependent TLS has recently emerged as a strategy to enhance the efficacy of first-line chemotherapy and reduce the acquisition of chemoresistance by decreasing tumor mutation rate.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2017
Background: Multiple oxysterols (OHCs) have demonstrated the ability to act as agonists or antagonists of the hedgehog (Hh) signaling pathway, a developmental signaling pathway that has been implicated as a potential therapeutic target in a variety of human diseases. These OHCs are known to modulate Hh signaling through direct binding interactions with the N-terminal cysteine rich domain (CRD) of Smoothened, a key regulator of Hh signal transduction.
Methods: Homology modeling, molecular dynamics simulations, and MM/GBSA energy calculations were utilized to explore binding interactions between the OHC scaffold and the human Smoothened CRD.
Aurora kinases belong to family of highly conserved serine/threonine protein kinases that are involved in diverse cell cycle events and play a major role in regulation of cell division. Abnormal expression of Aurora kinases may lead to cancer; hence, these are considered as a potential target in cancer treatment. In this research article, we identified three novel Aurora A inhibitors using modern computational tools.
View Article and Find Full Text PDFUsing integrated in-silico computational techniques, including homology modeling, structure-based and pharmacophore-based virtual screening, molecular dynamic simulations, per-residue energy decomposition analysis and atom-based 3D-QSAR analysis, we proposed ten novel compounds as potential CCR5-dependent HIV-1 entry inhibitors. Via validated docking calculations, binding free energies revealed that novel leads demonstrated better binding affinities with CCR5 compared to maraviroc, an FDA-approved HIV-1 entry inhibitor and in clinical use. Per-residue interaction energy decomposition analysis on the averaged MD structure showed that hydrophobic active residues Trp86, Tyr89 and Tyr108 contributed the most to inhibitor binding.
View Article and Find Full Text PDFThis article describes the design of biphenyl moiety linked with aryl piperazine and syntheses of fourteen 1-(biphenyl-4-yl)-2-[4-(substituted phenyl)-piperazin-1-yl]ethanone derivatives along with their pharmacological evaluation for antipsychotic activity and computational studies including quantitative structure activity relationship (QSAR) and descriptor based similarity study. All compounds were found to exhibit considerable anti-dopaminergic and anti-serotonergic activity in behavioural models. Among all derivatives, compound 1-(biphenyl-4-yl)-2-[4-(2-methoxyphenyl)-piperazin-1-yl]ethanone (3c) and 1-(biphenyl-4-yl)-2-[4-(2,3-dichlorophenyl)-piperazin-1-yl]ethanone (3k) showed impressive antipsychotic profile with lower potency for catalepsy induction.
View Article and Find Full Text PDFA series of novel N,N-diphenyl-2-[4-(substituted phenyl)piperazin-1-yl]acetamides was designed, synthesized and evaluated for anti-dopaminergic activity, anti-serotonergic activity and catalepsy induction studies in mice as an approach to novel potential antipsychotic agent. Antipsychotic activity of these compounds in terms of blocking of dopaminergic transmission was evaluated by their ability to inhibit apomorphine induced climbing behavior in mice and antiserotonergic activity of synthesized compounds was assessed by studying inhibition of 5-HTP induced head twitches. All the synthesized compounds were found to exhibit anti-dopaminergic and anti-serotonergic activity in behavioral models.
View Article and Find Full Text PDFThe dopamine D(2) receptor is involved in the etiology of a number of disorders, such as Parkinson's disease, Huntington's Chorea, tardive dyskinesia and schizophrenia. Antagonism of D(2) receptors is implicated in the treatment of various psychiatric disorders. In order to understand essential structural features required for D(2) antagonism, this research article elaborates on the generation of a four-point 3D pharmacophore model which was extracted from a series of 45 novel 3-[[(aryloxy)alkyl]piperidinyl]-1,2-benzisoxazole derivatives.
View Article and Find Full Text PDFMonoamine oxidase-A (MAO-A) inhibitors are of particular importance in the treatment of depressive disorders. Herein described is pharmacophore generation and atom-based 3D-QSAR analysis of previously reported pyrrole based MAO-A inhibitors in order to get insight into their structural requirements responsible for high affinity. The best pharmacophore model generated consisted of four features DHHR: a hydrogen bond donor (D), two hydrophobic groups (H) and an aromatic ring (R).
View Article and Find Full Text PDF