Publications by authors named "Radek Sindelka"

Background: Embryos are regeneration and wound healing masters. They rapidly close wounds and scarlessly remodel and regenerate injured tissue. Regeneration has been extensively studied in many animal models using new tools such as single-cell analysis.

View Article and Find Full Text PDF

DNA damage in embryos shapes the development of an organism. Understanding life stage-specific differences between fish species is essential for ecological risk assessment measures. We explored DNA damage sensitivity in two nonmodel fish species, sterlet (Acipenser ruthenus) and common carp (Cyprinus carpio).

View Article and Find Full Text PDF

In vertebrates, maternally supplied yolk is typically used in one of two ways: either intracellularly by endodermal cells or extracellularly via the yolk sac. This study delves into the distinctive gut development in sturgeons, which are among the most ancient extant fish groups, contrasting it with that of other vertebrates. Our observations indicate that while sturgeon endodermal cells form the archenteron (i.

View Article and Find Full Text PDF

The asymmetric localization of biomolecules is critical for body plan development. One of the most popular model organisms for early embryogenesis studies is but there is a lack of information in other animal species. Here, we compared the early development of two amphibian species-the frog and the axolotl .

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs) are the source of multipotent stem cells, which are important for regenerative medicine and diagnostic purposes. The isolation of human BMSCs from the bone marrow (BM) cavity using BM aspiration applies the method with collection into tubes containing anticoagulants. Interactions with anticoagulants may affect the characteristics and composition of isolated BMSCs in the culture.

View Article and Find Full Text PDF

Zebrafish (Danio rerio) is a commonly-used vertebrate model species for many research areas. However, its low milt volume limits effective cryopreservation of sperm from a single individual and often precludes dividing a single semen sample to conduct multiple downstream procedures such as genomic DNA/RNA extraction and in-vitro fertilization. Here, we apply germ stem cell transplantation to increase zebrafish sperm production in a closely related larger species from the same subfamily, giant danio Devario aequipinnatus.

View Article and Find Full Text PDF

The oocyte is a unique cell, from which develops a complex organism comprising of germ layers, tissues and organs. In some vertebrate species it is known that the asymmetrical localization of biomolecules within the oocyte is what drives the spatial differentiation of the daughter cells required for embryogenesis. This asymmetry is first established to produce an animal-vegetal (A-V) axis which reflects the future specification of the ectoderm, mesoderm, and endoderm layers.

View Article and Find Full Text PDF

Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and establishment of many biological processes, cell types and the body plan. However, our knowledge about evolutionary conservation of localized transcripts is still limited to a few models. Our goal was to compare localization profiles along the animal-vegetal axis of mature eggs from four vertebrate models, two amphibians (Xenopus laevis, Ambystoma mexicanum) and two fishes (Acipenser ruthenus, Danio rerio) using the spatial expression method called TOMO-Seq.

View Article and Find Full Text PDF

DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon were analyzed.

View Article and Find Full Text PDF

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy.

View Article and Find Full Text PDF

Sturgeons are among the most ancient linages of actinopterygians. At present, many sturgeon species are critically endangered. Surrogate production could be used as an affordable and a time-efficient method for endangered sturgeons.

View Article and Find Full Text PDF

Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors.

View Article and Find Full Text PDF

DNA damage caused by exogenous or endogenous factors is a common challenge for developing fish embryos. DNA damage repair (DDR) pathways help organisms minimize adverse effects of DNA alterations. In terms of DNA repair mechanisms, sturgeons represent a particularly interesting model due to their exceptional genome plasticity.

View Article and Find Full Text PDF

The merit of RNASeq data relies heavily on correct normalization. However, most methods assume that the majority of transcripts show no differential expression between conditions. This assumption may not always be correct, especially when one condition results in overexpression.

View Article and Find Full Text PDF

Background: The study of the mechanisms controlling wound healing is an attractive area within the field of biology, with it having a potentially significant impact on the health sector given the current medical burden associated with healing in the elderly population. Healing is a complex process and includes many steps that are regulated by coding and noncoding RNAs, proteins and other molecules. Nitric oxide (NO) is one of these small molecule regulators and its function has already been associated with inflammation and angiogenesis during adult healing.

View Article and Find Full Text PDF

Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII, serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CII leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase.

View Article and Find Full Text PDF

Asymmetric cell division is a ubiquitous feature during the development of higher organisms. Asymmetry is achieved by differential localization or activities of biological molecules such as proteins, and coding and non-coding RNAs. Here, we present subcellular transcriptomic and proteomic analyses along the animal-vegetal axis of Xenopus laevis eggs.

View Article and Find Full Text PDF

In oocytes, RNA localization has critical implications, as assembly of proteins in particular subcellular domains is crucial to embryo development. The distribution of mRNA molecules can identify and characterize localized transcripts. The goal of this study was to clarify the origin of primordial germ cells in the oocyte body plan and to reveal the generation of cell lineages by localized RNAs.

View Article and Find Full Text PDF

Nitric oxide (NO) is a potent radical molecule that participates in various biological processes such as vasodilation, cell proliferation, immune response and neurotransmission. NO mainly activates soluble guanylate cyclase, leading to cGMP production and activation of protein kinase G and its downstream targets. Here we report the essential role of NO during embryonic epidermis development.

View Article and Find Full Text PDF

Asymmetric division is a property of eukaryotic cells that is fundamental to the formation of higher life forms. Despite its importance, the mechanism behind it remains elusive. Asymmetry in the cell is induced by polarization of cell fate determinants that become unevenly distributed among progeny cells.

View Article and Find Full Text PDF

The precision and reliability of quantitative nucleic acid analysis depends on the quality of the sample analyzed and the integrity of the nucleic acids. The integrity of RNA is currently primarily assessed by the analysis of ribosomal RNA, which is the by far dominant species. The extrapolation of these results to mRNAs and microRNAs, which are structurally quite different, is questionable.

View Article and Find Full Text PDF

Asymmetric distribution of fate determinants within cells is an essential biological strategy to prepare them for asymmetric division. In this work we measure the intracellular distribution of 12 maternal microRNAs (miRNA) along the animal-vegetal axis of the Xenopus laevis oocyte using qPCR tomography. We find the miRNAs have distinct intracellular profiles that resemble two out of the three profiles we previously observed for mRNAs.

View Article and Find Full Text PDF

The extreme anterior domain (EAD) is a conserved embryonic region that includes the presumptive mouth. We show that the Kinin-Kallikrein pathway is active in the EAD and necessary for craniofacial development in Xenopus and zebrafish. The mouth failed to form and neural crest (NC) development and migration was abnormal after loss of function (LOF) in the pathway genes kng, encoding Bradykinin (xBdk), carboxypeptidase-N (cpn), which cleaves Bradykinin, and neuronal nitric oxide synthase (nNOS).

View Article and Find Full Text PDF

We have measured the expression of 41 maternal mRNAs in individual blastomeres collected from the 8 to 32-cell Xenopus laevis embryos to determine when and how asymmetry in the body plan is introduced. We demonstrate that the asymmetry along the animal-vegetal axis in the oocyte is transferred to the daughter cells during early cell divisions. All studied mRNAs are distributed evenly among the set of animal as well as vegetal blastomeres.

View Article and Find Full Text PDF

Advances in qPCR technology allow studies of increasingly large systems comprising many genes and samples. The increasing data sizes allow expression profiling both in the gene and the samples dimension while also putting higher demands on sound statistical analysis and expertise to handle and interpret its results. We distinguish between exploratory and confirmatory statistical studies.

View Article and Find Full Text PDF