Traumatic brain injury (TBI) has long been a leading cause of death and disability, yet research has failed to successfully translate findings from the pre-clinical, animal setting into the clinic. One factor that contributes significantly to this struggle is the heterogeneity observed in the clinical setting where patients present with injuries of varying types, severities, and comorbidities. Modeling this highly varied population in the laboratory remains challenging.
View Article and Find Full Text PDFEffective team science requires procedural harmonization for rigor and reproducibility. Multicenter studies across experimental modalities (domains) can help accelerate translation. The Translational Outcomes Project in NeuroTrauma (TOP-NT) is a pre-clinical traumatic brain injury (TBI) consortium charged with establishing and validating noninvasive TBI assessment tools through team science.
View Article and Find Full Text PDFWestern blot is a popular biomolecular analysis method for measuring the relative quantities of independent proteins in complex biological samples. However, variability in quantitative western blot data analysis poses a challenge in designing reproducible experiments. The lack of rigorous quantitative approaches in current western blot statistical methodology may result in irreproducible inferences.
View Article and Find Full Text PDFEffective data management and sharing have become increasingly crucial in biomedical research; however, many laboratory researchers lack the necessary tools and knowledge to address this challenge. This article provides an introductory guide into research data management (RDM), and the importance of FAIR (Findable, Accessible, Interoperable, and Reusable) data-sharing principles for laboratory researchers produced by practicing scientists. We explore the advantages of implementing organized data management strategies and introduce key concepts such as data standards, data documentation, and the distinction between machine and human-readable data formats.
View Article and Find Full Text PDFProgression of intracranial hemorrhage is a common, potentially devastating complication after moderate/severe traumatic brain injury (TBI). Clinicians have few tools to predict which patients with traumatic intracranial hemorrhage on their initial head computed tomography (hCT) scan will progress. The objective of this investigation was to identify clinical, imaging, and/or protein biomarkers associated with progression of intracranial hemorrhage (PICH) after moderate/severe TBI and to create an accurate predictive model of PICH based on clinical features available at presentation.
View Article and Find Full Text PDFObjective: Venous thromboembolism (VTE) following traumatic spinal cord injury (SCI) is a significant clinical concern. This study sought to determine the incidence of VTE and hemorrhagic complications among patients with SCI who received low-molecular-weight heparin (LMWH) within 24 hours of injury or surgery and identify variables that predict VTE using the prospective Transforming Research and Clinical Knowledge in SCI (TRACK-SCI) database.
Methods: The TRACK-SCI database was queried for individuals with traumatic SCI from 2015 to 2022.
Western blot is a popular biomolecular analysis method for measuring the relative quantities of independent proteins in complex biological samples. However, variability in quantitative western blot data analysis poses a challenge in designing reproducible experiments. The lack of rigorous quantitative approaches in current western blot statistical methodology may result in irreproducible inferences.
View Article and Find Full Text PDFThe use of animal models in pre-clinical research has significantly broadened our understanding of the pathologies that underlie traumatic brain injury (TBI)-induced damage and deficits. However, despite numerous pre-clinical studies reporting the identification of promising neurotherapeutics, translation of these therapies to clinical application has so far eluded the TBI research field. A concerted effort to address this lack of translatability is long overdue.
View Article and Find Full Text PDFIntroduction: High-performing biomarkers measuring the vascular contributions to cognitive impairment and dementia are lacking.
Methods: Using a multi-site observational cohort study design, we examined the diagnostic accuracy of plasma placental growth factor (PlGF) within the MarkVCID Consortium (n = 335; CDR 0-1). Subjects underwent clinical evaluation, cognitive testing, MRI, and blood sampling as defined by Consortium protocols.
Traumatic brain injuries (TBI) have led to lasting deficits for an estimated 5.3 million American patients. Effective therapies for these patients remain scarce and each of the clinical trials stemming from success in experimental models has failed.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a leading cause of death and disability. Yet, despite immense research efforts, treatment options remain elusive. Translational failures in TBI are often attributed to the heterogeneity of the TBI population and limited methods to capture these individual variabilities.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Traumatic brain injury (TBI) is a leading cause of death and disability yet treatment strategies remain elusive. Advances in machine learning present exciting opportunities for developing personalized medicine and informing laboratory research. However, their feasibility has yet to be widely assessed in animal research where data are typically limited or in the TBI field where each patient presents with a unique injury.
View Article and Find Full Text PDFApproximately 10 million new cases of traumatic brain injury (TBI) are reported each year worldwide with many of these injuries resulting in higher order cognitive impairments. Galantamine (GAL), an acetylcholine esterase inhibitor (AChEI) and positive allosteric modulator of nicotinic acetylcholine receptors (nAChRs), has been reported to ameliorate cognitive deficits after clinical TBI. Previously, we demonstrated that controlled cortical impact (CCI) injury to rats resulted in significant executive function impairments as measured by the attentional set-shifting test (AST), a complex cognitive task analogous to the Wisconsin Card Sorting Test (WCST).
View Article and Find Full Text PDFTypical antipsychotic drugs (APDs) with Dantagonistic properties impede functional outcome after experimental traumatic brain injury (TBI) and reduce the effectiveness of environmental enrichment (EE). Here we test the hypothesis that aripiprazole (ARIP), an atypical APD with partial Dand 5-HTreceptor agonist activities will improve recovery after TBI and when combined with EE will further enhance the benefits. Anesthetized adult male rats received either a controlled cortical impact of moderate severity or sham injury and then were randomly assigned to EE or standard (STD) housing and once daily intraperitoneal injections of ARIP (0.
View Article and Find Full Text PDFThe administration of haloperidol (HAL) once-daily for 19 days after experimental traumatic brain injury (TBI) impedes recovery and attenuates the efficacy of environmental enrichment (EE). However, it is unknown how intermittent administration of HAL affects the recovery process when paired with EE. Addressing the uncertainty is relevant because daily HAL is not always warranted to manage TBI-induced agitation in the clinic, and indeed intermittent therapy may be a more common approach.
View Article and Find Full Text PDFEnvironmental enrichment (EE) confers motor and cognitive recovery in pre-clinical models of traumatic brain injury (TBI), and neurogenesis has been attributed to mediating the benefits. Whether that ascription is correct has not been fully investigated. Hence, the goal of the current study is to further clarify the possible role of learning-induced hippocampal neurogenesis on functional recovery after cortical impact or sham injury by utilizing two EE paradigms (i.
View Article and Find Full Text PDFThe typical environmental enrichment (EE) paradigm, which consists of continuous exposure after experimental traumatic brain injury (TBI), promotes behavioral and histological benefits. However, rehabilitation is often abbreviated in the clinic and administered in multiple daily sessions. While recent studies have demonstrated that a once daily 6-hr bout of EE confers benefits comparable to continuous EE, breaking the therapy into two shorter sessions may increase novelty and ultimately enhance recovery.
View Article and Find Full Text PDFEnvironmental enrichment (EE) promotes behavioral recovery after experimental traumatic brain injury (TBI). However, the chronic rehabilitation provided in the laboratory is not analogous to the clinic where physiotherapy is typically limited. Moreover, females make up approximately 40% of the clinical TBI population, yet they are seldom studied in brain trauma.
View Article and Find Full Text PDFTraumatic brain injury (TBI)-induced agitation and aggression pose major obstacles to clinicians in the acute hospital and rehabilitation settings. Thus, management of these symptoms is crucial. Antipsychotic drugs (APDs) are a common treatment approach for alleviating these symptoms.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets.
View Article and Find Full Text PDFEnvironmental enrichment (EE) confers significant benefits after experimental traumatic brain injury (TBI). In contrast, the antipsychotic drug (APD) haloperidol (HAL) exerts deleterious effects on neurobehavioral and cognitive recovery. Neurorehabilitation and management of agitation, however, are integral components of the treatment strategy for patients with TBI.
View Article and Find Full Text PDFEnvironmental enrichment (EE) and methylphenidate (MPH) independently confer significant benefit to behavioral recovery after controlled cortical impact (CCI) injury. Given that combinational therapies may be more clinically translatable than monotherapies, the aim of the current study was to test the hypothesis that a combined treatment regimen of EE and MPH would provide greater therapeutic efficacy than either one alone. Anesthetized adult male rats received either a CCI of moderate severity or sham injury and were then randomly assigned to EE or standard (STD) housing where they received either intraperitoneal (ip) MPH (5 mg/kg) or vehicle (VEH; 1.
View Article and Find Full Text PDF