Osteopenia and osteoporosis affect over 40 million US adults 50 years and older. Both diseases are strongly influenced by estrogen and nutritional-mineral deficiencies. This study investigates the efficacy of orally delivered synthetic-bone-mineral (SBM), a newly developed calcium phosphate based biomaterial, on reversing bone loss induced by these two critical deficiencies.
View Article and Find Full Text PDFVarious surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP, and FZn-CaP and incubated for 24 h.
View Article and Find Full Text PDFCalcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM.
View Article and Find Full Text PDFVarious calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regeneration capacity of biodegradable, porous poly(propylene fumarate) (PPF) scaffolds. PPF scaffolds were coated with three different calcium phosphate formulations: magnesium-substituted β-tricalcium phosphate (β-TCMP), carbonated hydroxyapatite (synthetic bone mineral, SBM) and biphasic calcium phosphate (BCP).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2014
We have developed a calcium phosphate glass (CPG) doped with Zn(2+) or F(-) or combined Zn(2+) and F(-) ions, which are naturally found in the human body and play a dual role in bone formation and antibacterial activity. Previously, we have demonstrated that this family of CPGs has superior osteoconductive and resorbable properties in vivo. This study aimed to investigate the antibacterial property of CPGs incorporating Zn(2+) and/or F(-) .
View Article and Find Full Text PDF3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.
View Article and Find Full Text PDFThe aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s.
View Article and Find Full Text PDFUnlabelled: Osteoporosis affects the craniofacial and oral structures and has been associated with periodontal bone loss, tooth loss and reduced jaw bone mass.
Objective: This study aimed to test the therapeutic efficacy of synthetic bone mineral (SBM) in minimizing alveolar bone loss induced by mineral deficiency in a rat model. SBM consists of a calcium carbonate apatite (similar to bone apatite) matrix incorporating magnesium, zinc, and fluoride ions.
Objective: The aim of this study was to evaluate the effects of ZnCl(2) on plaque-growth and vitality pattern of dental biofilm and to determine the optimum zinc concentration for the inhibition of plaque formation.
Design: Data were collected from nine volunteers for whom a special-designed acrylic appliance was prescribed after a careful dental check up. The volunteers rinsed twice daily for 2min with ZnCl(2) of 2.
Objectives: This study aimed to determine the efficacy of experimental calcium phosphate-based solutions (sCaP) containing fluoride (F), with and without zinc (Zn) ions on reducing susceptibility to acid dissolution and Streptococcus mutans (S. mutans) colonization of dentin surfaces.
Methods: Dentin sections were treated with double distilled water (control) and with sCaP solutions differing in pH and in F(-) and/or Zn(2+) ion concentrations.
Purpose: To determine the efficacy supersaturated calcium phosphate (CaP) solutions containing fluoride (F) and zinc (Zn) ions in occluding dentin tubules with precipitates less susceptible to acid dissolution and to compare the performance of these solutions with the oxalate solutions containing calcium (Ca) or phosphate (P) ions.
Methods: Dentin sections from human molars divided into groups: Group A - control (treated with double distilled H2O), Groups A1, A2 and A3 were treated with experimental solutions supersaturated with respect to F and Zn-substituted calcium phosphates. Solutions A1 and A2 were similar in composition but differed in pH values (A1, pH 7; A2, pH 5.
BCP are considered the most promising biomaterials for bone reconstruction. This study aims at analyzing the outcomes of patients who received BCP as bone substitutes in orthopaedic surgeries. Sixty-six patients were categorized according to the etiology and morphology of the bone defects and received scores after clinical and radiographic evaluations.
View Article and Find Full Text PDFThe success of implants in orthopaedic and dental load-bearing applications crucially depends on the initial biological fixation of implants in surrounding bone tissues. Using hydroxyapatite (HA) coating on Ti implant as carrier for bone morphogenetic proteins (BMPs) may promote the osteointegration of implants; therefore, reduce the risk of implant failure. The goal of this study was to develop an HA coating method in conditions allowing the incorporation of protein-based drugs into the coating materials, while achieving a mechanical stable coating on Ti implant.
View Article and Find Full Text PDFBioactive hydroxyapatite (HA) coating on titanium (Ti) implant can be used as a drug delivery device. A controlled release of drug around the implant requires the incorporation of drug into the coating material during the coating process. HA coating was prepared using a two-step procedure in conditions suitable for simultaneous incorporation of the protein-based drug into the coating material.
View Article and Find Full Text PDFOur previous study demonstrated that calcium-bonded titanium surface (Ca-Ti) can be obtained by hydrothermal reaction between titanium (Ti) and CaCl(2) and that bone-apatite like formation was observed after immersion in simulated body fluid. The purpose of the study was to determine the in vivo response to Ca-Ti surface using a rodent tibia model. Cylinders of commercially pure Ti were divided into three groups: (1) untreated group; (2) NaOH+hTi group: soaked in 5 mol/L NaOH solution at 60 degrees C then heated at 400 degrees C for 1 h; and (3) Ca-Ti group: hydrothermally treated in the presence of 10 mmol/L CaCl(2) at 200 degrees C for 24 h.
View Article and Find Full Text PDFBackground: Few studies have examined utilization of oral health care services among immigrants. The authors examined the determinants of utilization of oral health care among a diverse group of immigrants in New York City.
Methods: The authors examined and interviewed 1,417 foreign-born people, aged 18 to 65 years, who were residents of New York City.
Biological apatites are characterized by the presence of minor constituents such as magnesium (Mg), chloride (Cl), or fluoride (F) ions. These ions affect cell proliferation and osteoblastic differentiation during bone tissue formation. F-substituted apatites are being explored as potential bonegraft materials.
View Article and Find Full Text PDFBone repair and regeneration is one of the most extensively studied areas in the field of tissue engineering. All of the current tissue engineering approaches to create bone focus on intramembranous ossification, ignoring the other mechanism of bone formation, endochondral ossification. We propose to create a transient cartilage template in vitro, which could serve as an intermediate for bone formation by the endochondral mechanism once implanted in vivo.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2009
The final aim of our study is to develop a novel calcium phosphate cement based on zinc-containing α-tricalcium phosphate (αZnTCP) and evaluate its potential as bonegraft material in vivo. In the present study, in vivo efficacy of zinc in hardened bodies of αZnTCP was explored. The hardened bodies prepared from αZnTCP with zinc content of 0.
View Article and Find Full Text PDFThe mineral in bone is an impure hydroxyapatite, with carbonate as the chief minor substituent. Fluoride has been shown to stimulate osteoblastic activity and inhibit osteoclastic resorption in vitro. CO(3)- and F-substituted apatite (CFA) has been considered as potential bone graft material for orthopedic and dental applications.
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2009
The purpose of this study was to prepare and characterize a three-dimensional scaffold consisting of porous nonwoven silk fibroin net/nano-apatite composite. The silk fibroin net was mineralized with apatite by alternative soaking in calcium and phosphate solutions. The scaffold exhibited a porous microstructure with open porosity (70-78%), with an average pore size of about 163 +/- 40.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2009
The specific aim of this study was to evaluate the efficacy of well-characterized Mg/Zn/F-CaP preparations (administered by injection) in preventing bone mineral deficiency in ovariectomized (OVX) rats. Donryu rats (4 weeks old, average weight 70 g) were divided into six experimental groups: GN (normal), GC (control, OVX), and OVX rats injected with suspensions of MZF-CaPs (G2, G3, and G4) or with Zn-containing tricalcium phosphate (ZnTCP, G1). The composition of the preparations was G1: 34.
View Article and Find Full Text PDFJ Mater Sci Mater Med
February 2009
Tricalcium phosphate (TCP) is recognized as a promising bone replacement material due to its high bioactivity and resorbable properties. To mimic biological apatites, incorporation of magnesium (Mg) in TCP was proposed. Mg-substituted TCP (beta-TCMP) and beta-TCP dense tablets were obtained by pressing and sintering at 1,000 degrees C Mg-substituted calcium deficient apatite (Mg-CDA) and commercial TCP, respectively.
View Article and Find Full Text PDFEndodontic treatment in dentistry is a delicate procedure and many treatment attempts fail. Despite constant development of new root canal filling techniques, the clinician is confronted with both a complex root canal system and the use of filling materials that are harmful for periapical tissues. This paper evaluates reported studies on biomaterials used in endodontics, including calcium hydroxide, mineral trioxide aggregate, calcium phosphate ceramics and calcium phosphate cements.
View Article and Find Full Text PDF