Mitochondrial activation and the production of mitochondrial reactive oxygen species (mROS) are crucial for CD4 T cell responses and have a role in naïve cell signaling after TCR activation. However, little is known about mROS role in TCR-independent signaling and in recall responses. Here, we found that mROS are required for IL-12 plus IL-18-driven production of IFN-γ, an essential cytokine for inflammatory and autoimmune disease development.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most devastating and least treatable brain tumor with median survival <15 months and extremely high recurrence rates. Promising results of immune checkpoint blockade obtained from pre-clinical studies in mice did not translate to clinic, and new strategies are urgently needed, particularly those targeting GBM stem cells (GSCs) that are held responsible for drug resistance and tumor recurrence. Patient-derived GSC cultures are critical for finding effective brain tumor therapies.
View Article and Find Full Text PDFMacrophages occupy a prominent position during immune responses. They are considered the final effectors of any given immune response since they can be activated by a wide range of surface ligands and cytokines to acquire a continuum of functional states. Macrophages are involved in tissue homeostasis and in the promotion or resolution of inflammatory responses, causing tissue damage or helping in tissue repair.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it might provide an alternative to traditional solid biopsies. However, the most effective approach for EV isolation is not yet well established.
View Article and Find Full Text PDFExtracellular vesicles (EVs) - including exosomes, microvesicles and apoptotic bodies - have received much scientific attention last decade as mediators of a newly discovered cell-to-cell communication system, acting at short and long distances. EVs carry biologically active molecules, thus providing signals that influence a spectrum of functions in recipient cells during various physiological and pathological processes. Recent findings point to EVs as very attractive immunomodulatory therapeutic agents, vehicles for drug delivery and diagnostic and prognostic biomarkers in liquid biopsies.
View Article and Find Full Text PDFLiquid biopsy is becoming a new source of biomarkers that complement and resolve some of the most important limitations of surgical biopsy, which are the accessibility to the diseased tissue and its heterogeneity, especially relevant for tumors. The diseased tissues release their molecule content to the bloodstream in free form, inside a cell or within extracellular vesicles (EVs). While the identification of molecular alterations in total DNA isolated from peripheral blood is already in use for some tumors that secrete large amounts of DNA, it is challenging to assay those secreting lower amounts of molecules as well as for many other non-tumoral pathologies like immunological and cardiovascular diseases.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have been increasingly recognized as a potential source of disease biomarkers, since they contain a multitude of biologically active protein, DNA and RNA species, and they can be retrieved from circulating blood of patients. Here, we describe a protocol for DNA extraction from exosomes, shedding microvesicles and apoptotic bodies isolated from peripheral blood in a mouse xenograft model of solid tumor. In this model, human DNA isolated from tumor-derived EVs can be readily distinguished from the one of the hosts, which is of particular interest for studies aimed at molecular characterization of tumor biomarkers.
View Article and Find Full Text PDFSepsis is a complex biphasic syndrome characterized by both pro- and anti-inflammatory immune states. Whereas early sepsis mortality is caused by an acute, deleterious pro-inflammatory response, the second sepsis phase is governed by acute immunosuppression, which predisposes patients to long-term risk for life-threatening secondary infections. Despite extensive basic research and clinical trials, there is to date no specific therapy for sepsis, and mortality rates are on the rise.
View Article and Find Full Text PDFHuman gliomas harbour cancer stem cells (CSCs) that evolve along the course of the disease, forming highly heterogeneous subpopulations within the tumour mass. These cells possess self-renewal properties and appear to contribute to tumour initiation, metastasis and resistance to therapy. CSC cultures isolated from surgical samples are considered the best preclinical in vitro model for primary human gliomas.
View Article and Find Full Text PDFM1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death.
View Article and Find Full Text PDFSelf/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion.
View Article and Find Full Text PDFAlterations in the antioxidative defense parameters upon chronic stress are considered critical for pathophysiology of stress related psychiatric disorders, and their status in blood serves as biomarker for effects of pharmacological treatments. The present study was designed to investigate the modulation of erythrocyte antioxidant enzymes (AOEs): CuZn superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GLR) activities and their protein expression in Wistar male rats subjected to chronic psychosocial isolation and/or to pharmacological treatment with fluoxetine. Chronically isolated animals exhibited decreased levels of serum corticosterone, as opposed to other chronic stress paradigms.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2011
This work reports, for the first time, the presence of New Delhi metallo-β-lactamase 1 (NDM-1) in Pseudomonas aeruginosa. Moreover, this is the first report of the NDM-1 presence in the Balkan region. Cosmid gene libraries of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical isolates MMA83 and MMA533 were screened for the presence of metallo-β-lactamases.
View Article and Find Full Text PDF