The γ2 subunit of GABA type A receptors (GABARs) is thought to be subject to palmitoylation by both Golgi-associated DHHC-type zinc finger protein (GODZ; also known as DHHC3) and its paralog Sertoli cell gene with a zinc finger domain-β (SERZ-β; DHHC7) based on overexpression of enzymes and substrates in heterologous cells. Here we have further investigated the substrate specificity of these enzymes by characterization of GODZ and SERZ-β knock-out (KO) mice as well as double KO (DKO) neurons. Palmitoylation of γ2 and a second substrate, growth-associated protein of 43 kDa, that is independently implicated in trafficking of GABARs was significantly reduced in brain of GODZ KO versus wild-type (WT) mice but unaltered in SERZ-β KO mice.
View Article and Find Full Text PDFMice that were rendered heterozygous for the γ2 subunit of GABAA receptors (γ2(+/-) mice) have been characterized extensively as a model for major depressive disorder. The phenotype of these mice includes behavior indicative of heightened anxiety, despair, and anhedonia, as well as defects in hippocampus-dependent pattern separation, HPA axis hyperactivity and increased responsiveness to antidepressant drugs. The γ2(+/-) model thereby provides strong support for the GABAergic deficit hypothesis of major depressive disorder.
View Article and Find Full Text PDFBackground: The gamma-aminobutyric acid (GABA) Type A receptor deficits that are induced by global or forebrain-specific heterozygous inactivation of the gamma2 subunit gene in mouse embryos result in behavior indicative of trait anxiety and depressive states. By contrast, a comparable deficit that is delayed to adolescence is without these behavioral consequences. Here we characterized gamma2-deficient mice with respect to hypothalamic-pituitary-adrenal (HPA) axis abnormalities and antidepressant drug responses.
View Article and Find Full Text PDF