Photosensitizing agents have received increased attention from the medical community, owing to their higher photothermal efficiency, induction of hyperthermia, and sustained delivery of bioactive molecules to their targets. Micro/nanorobots can be used as ideal photosensitizing agents by utilizing various physical stimuli for the targeted killing of pathogens (e.g.
View Article and Find Full Text PDFMacrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization.
View Article and Find Full Text PDFConductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses.
View Article and Find Full Text PDF354Fabrication of multifunctional hemostats is indispensable against chronic blood loss and accelerated wound healing. Various hemostatic materials that aid wound repair or rapid tissue regeneration has been developed in the last 5 years. This review provides an overview of the three-dimensional (3D) hemostatic platforms designed through the latest technologies like electrospinning, 3D printing, and lithography, solely or in combination, for application in rapid wound healing.
View Article and Find Full Text PDFPlants are anatomically and physiologically different from humans and animals; however, there are several possibilities to utilize the unique structures and physiological systems of plants and adapt them to new emerging technologies through a strategic biomimetic approach. Moreover, plants provide safe and sustainable results that can potentially solve the problem of mass-producing practical materials with hazardous and toxic side effects, particularly in the biomedical field, which requires high biocompatibility. In this review, it is investigated how micro-nanostructures available in plants (e.
View Article and Find Full Text PDF