In recent years, there has been an increased motivation to reduce meat consumption globally due to environmental and health concerns, which has driven the development of meat substitutes. Filamentous fungal biomass, commonly known as mycoprotein, is a potential meat substitute since it is nutritious and has filaments to mimic meat fibrils. The current study aimed to investigate the potential use of a cheap substrate derived from the food industry, i.
View Article and Find Full Text PDFFilamentous fungi serve as potential candidates in the production of different value-added products. In the context of food, there are several advantages of using filamentous fungi for food. Among the main advantages is that the fungal biomass used food not only meets basic nutritional requirements but that it is also rich in protein, low in fat, and free of cholesterol.
View Article and Find Full Text PDFProbiotic coffee is an alternative to processed coffee that is preferred and can improve the balance of intestinal microflora so that it has a positive impact on health. Cell viability of probiotics may decrease during storage. Factors that can affect viability during storage are storage temperature, packaging, oxygen, and water activity.
View Article and Find Full Text PDFThe use of mixed culture in the fermentation industry requires more complicated equipment, processes, and monitoring systems; therefore, a single culture may be preferable. This study aimed to investigate the correlation between chemical and microbiological properties and sensory characteristics. In addition, this study aimed to determine the different characteristics of cheese made using single probiotic cultures of Dad-13 and Kita-3 and mixed culture.
View Article and Find Full Text PDFResource dependency of food production is aggravated when food is wasted. In Sweden, it is estimated that 37% of the total bread waste is generated at the household level. This work aimed to assess whether fermentation using edible filamentous fungi at households can provide a solution to valorize leftover bread in the production of fungi-based food for consumption.
View Article and Find Full Text PDFFruit and vegetable processing wastes are global challenges but also suitable sources with a variety of nutrients for different fermentative products using bacteria, yeast or fungi. The interaction of microorganisms with bioactive compounds in fruit waste can have inhibitory or enhancing effect on microbial growth. In this study, the antimicrobial effect of 10 bioactive compounds, including octanol, ellagic acid, (-)-epicatechin, quercetin, betanin, ascorbic acid, limonene, hexanal, car-3-ene, and myrcene in the range of 0-240 mg/L on filamentous fungi and were investigated.
View Article and Find Full Text PDFHuman activities generate enormous amounts of organic wastes and residues. Filamentous fungi (FF) are able to grow on a broad range of substrates and survive over a wide spectrum of growth conditions. These characteristics enable FF to be exploited in biorefineries for various waste streams.
View Article and Find Full Text PDFAdhesion capacity is considered one of the selection criteria for probiotic strains. The purpose of this study was to determine the adhesion properties of two candidate probiotics, Dad-13 and Mut-7. The evaluation included the hydrophobicity of the cell surface using microbial adhesion to hydrocarbons (MATH), autoaggregation, and the adhesion of Dad-13 and Mut-7 to the intestinal mucosa of Sprague Dawley rat, followed by genomic analysis of the two strains.
View Article and Find Full Text PDFThe growing population and the climate changes put a pressure on food production globally, therefore a fundamental transformation of food production is required. One approach to accelerate food production is application of modern biotechnology such as cell culture, marker assisted selection, and genetic engineering. Cell culture technology reduces the usage of arable land, while marker-assisted selection increases the genetic gain of crop breeding and genetic engineering enable to introduce a desired traits to crop.
View Article and Find Full Text PDFRaw syngas contains tar contaminants including toluene and naphthalene, which inhibit its conversion to methane. Cell encasement in a hydrophilic reverse membrane bioreactor (RMBR) could protect the cells from hydrophobic contaminants. This study aimed to investigate the inhibition of toluene and naphthalene and the effect of using RMBR.
View Article and Find Full Text PDFIn a circular economy approach, edible filamentous fungi (single cell protein) can be cultivated on volatile fatty acids (VFAs) derived from anaerobic digestion (AD) of organic-rich waste streams. In this study, the effect of pH, concentration/distribution of VFAs, nutrient supplementation, and type of waste on Aspergillus oryzae cultivation on synthetic VFAs, and actual VFAs derived from AD of food waste and cow manure were investigated. The optimal pH for A.
View Article and Find Full Text PDFRhizopus oligosporus is an edible filamentous fungus that can contribute to meet the growing demand for single-cell protein. Volatile fatty acids (VFAs) are favorable potential substrates for producing R. oligosporus biomass due to their capacity to be synthesized from a wide range of low-value organic solid wastes via anaerobic digestion.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2020
The growing interest in spicy foods leads to the global demand for spices, particularly dried chili. This study aimed to assay both aflatoxin (AFs) and ochratoxin A (OTA) contamination using an integrative method of morphological identification, molecular detection, and chromatography analysis on dried chili provided from traditional and modern markets in Indonesia. The results showed that total fungal infection ranged from 1-408 × 10 CFU/g.
View Article and Find Full Text PDFSeveral feedstocks for anaerobic digestion (AD) have challenges that hamper the success of AD with their low accessible surface area, biomass recalcitrance, and the presence of natural inhibitors. This paper presents different types of pretreatment to address those individual challenges and how they contribute to facilitate AD. Organosolv and ionic liquid pretreatments are effective to remove lignin without a significant defect on lignin structures.
View Article and Find Full Text PDFCitrus waste is a promising potential feedstock for anaerobic digestion, yet the presence of inhibitors such as d-limonene is known to limit the process. Effluent recirculation has been proven to increase methane yield in a semi-continuous process for recalcitrant material, but it has never been applied to toxic materials. This study was aimed to investigate the effect of recirculation on biogas production from citrus waste as toxic feedstock in two-stage anaerobic digestion.
View Article and Find Full Text PDFThe presence of an antimicrobial compound called D-Limonene in citrus waste inhibits methane production from such waste in anaerobic digestion. In this work, a two-stage anaerobic digestion method is developed using reverse membrane bioreactors (rMBRs) containing cells encased in hydrophilic membranes. The purpose of encasement is to retain a high cell concentration inside the bioreactor.
View Article and Find Full Text PDFLimonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20-40°C with orange peel waste and hexane ratio (w/v) ranging from 1 : 2 to 1 : 12 for 10 to 300 min.
View Article and Find Full Text PDFFruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits.
View Article and Find Full Text PDFRapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF) membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well.
View Article and Find Full Text PDFA novel membrane bioreactor configuration containing both free and encased cells in a single reactor was proposed in this work. The reactor consisted of 120g/L of free cells and 120g/L of encased cells in a polyvinylidene fluoride membrane. Microcrystalline cellulose (Avicel) and d-Limonene were used as the models of substrate and inhibitor for biogas production, respectively.
View Article and Find Full Text PDFIn order to improve biogas production from fruit wastes, the inhibitory effects of fruit flavors on anaerobic digestion were investigated. Batch anaerobic digestion was performed for 30 days using synthetic medium and thermophilic sludge. Three groups of flavor compounds i.
View Article and Find Full Text PDFMixed fungal cultures used for making tempe, a fermented soy bean food, were screened for biomass conversion. Thirty-two zygomycetes strains from two tempe cultures were isolated and identified as Rhizopus, Mucor, Rhizomucor, and Absidia species based upon morphology. The dry weight biomass of these strains contained 49% to 63% protein and 10-24% chitosan.
View Article and Find Full Text PDF