Publications by authors named "Rachid Mrabet"

Farming management practices are of paramount importance for soil organic carbon (SOC) sequestration in carbon (C) cycling at different scales. However, due to a lack of proper methodologies, estimating the impacts of different soil management practices on overall SOC stock remains inadequately quantified. In this paper, a process-based model, Denitrification-Decomposition (DNDC), was validated on midterm (9 years) and employed depending on the local climate, soil and management conditions, to assess the impacts of alternative management practices on SOC stock under two tillage systems, in a semi-arid region of Morocco.

View Article and Find Full Text PDF

For many years, the application of mixed-effects modeling has received much attention for predicting scenarios in the fields of theoretical and applied sciences. In this study, a "new" Multilevel Linear Mixed-Effects (LME) model is proposed to analyze and predict multiply-nested and hierarchical data. Temperature and rainfall observation were carried out successively between 1979-2014 and 1984-2018; and the data input was organized on monthly basis for each year.

View Article and Find Full Text PDF

The Argane tree ( L. Skeels) is an endemic tree of mid-western Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds.

View Article and Find Full Text PDF

The plants belonging to the Ericaceae family are morphologically diverse and widely distributed groups of plants. They are typically found in soil with naturally poor nutrient status. The objective of the current study was to identify cultivable mycobionts from roots of nine species of Ericaceae (Calluna vulgaris, Erica arborea, Erica australis, Erica umbellate, Erica scoparia, Erica multiflora, Arbutus unedo, Vaccinium myrtillus, and Vaccinium corymbosum).

View Article and Find Full Text PDF

Phosphogypsum (PG) is a residue of the phosphate fertilizer industry that has relatively high concentrations of 226Ra and other radionuclides. Thus, it is interesting to study the effect of PG applied as a Ca amendment on the levels and behavior of radionuclides in agricultural soils. A study involving treatments with 13 and 26 Mg ha(-1) of PG and 30 Mg ha(-1) of manure was performed, measuring 226Ra and U isotopes in drainage water, soil, and plant samples.

View Article and Find Full Text PDF