Publications by authors named "Rachelle T Hassarati"

Objective: The primary aim was to analyze the speech perception outcomes of patients with cochlear implants 65 years and older, compared with those younger than 65 years. The secondary aim was to analyze if preoperative hearing levels, severe compared with profound, had an effect on speech perception outcomes in senior citizens.

Study Design: Retrospective case review of 785 patients, between 2009 and 2016.

View Article and Find Full Text PDF

Objective: To assess the distance burden for access to cochlear implant (CI)-related services and to assess whether socioeconomic disadvantage or level of education and occupation influenced uptake of CIs.

Study Design: Retrospective case review.

Setting: A CI services provider operating across multiple centers.

View Article and Find Full Text PDF

The recent success of olfactory ensheathing cell (OEC) assisted regeneration of injured spinal cord has seen a rising interest in the use of these cells in tissue-engineered systems. Previously shown to support neural cell growth through glial scar tissue, OECs have the potential to assist neural network formation in living electrode systems to produce superior neuroprosthetic electrode surfaces. The following study sought to understand the influence of biphasic electrical stimulation (ES), inherent to bionic devices, on cell survival and function, with respect to conventional metallic and developmental conductive hydrogel (CH) coated electrodes.

View Article and Find Full Text PDF

Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways.

View Article and Find Full Text PDF

Conductive hydrogel (CH) coatings for biomedical electrodes have shown considerable promise in improving electrode mechanical and charge transfer properties. While they have desirable properties as a bulk material, there is limited understanding of how these properties translate to a microelectrode array. This study evaluated the performance of CH coatings applied to Nucleus Contour Advance cochlear electrode arrays.

View Article and Find Full Text PDF

Soft, cell integrated electrode coatings are proposed to address the problem of scar tissue encapsulation of stimulating neuroprosthetics. The aim of these studies was to prove the concept and feasibility of integrating a cell loaded hydrogel with existing electrode coating technologies. Layered conductive hydrogel constructs are embedded with neural cells and shown to both support cell growth and maintain electro activity.

View Article and Find Full Text PDF

Conducting polymer (CP) coatings on medical electrodes have the potential to provide superior performance when compared to conventional metallic electrodes, but their stability is strongly dependant on the substrate properties. The aim of this study was to examine the effect of laser roughening of underlying platinum (Pt) electrode surfaces on the mechanical, electrical and biological performance of CP coatings. In addition, the impact of dopant type on electrical performance and stability was assessed.

View Article and Find Full Text PDF

A hybrid system for producing conducting polymers within a doping hydrogel mesh is presented. These conductive hydrogels demonstrate comparable electroactivity to conventional conducting polymers without requiring the need for mobile doping ions which are typically used in literature. These hybrids have superior mechanical stability and a modulus significantly closer to neural tissue than materials which are commonly used for medical electrodes.

View Article and Find Full Text PDF