The herbicide atrazine is widely used for controlling broad leaf weeds and increasing crop yields in agricultural areas. Atrazine enters aquatic environments through runoff, ground water discharge and seepage where concentrations have been recorded above 300 ppb. Exposure to the herbicide atrazine at environmentally relevant concentrations has been shown to negatively impact aquatic organisms, including crayfish.
View Article and Find Full Text PDFThe emergent contaminant family, per- and poly-fluorinated alkyl substances (PFAS) has gained research attention due to their widespread detection and stability within the environment. Despite the growing amount of research on perfluorooctanesulfonic acid (PFOS) and perfluoro-n-octanoic acid (PFOA) in aquatic organisms, investigations detailing behavioral and physiological effects of aquatic organisms exposed to a mixture of PFAS analytes in the wild have been limited. The objective of this study was to evaluate the potential behavioral and histological effects of environmental exposure to PFAS compounds within multiple trophic levels of aquatic ecosystems.
View Article and Find Full Text PDFThe herbicide atrazine is heavily applied in agricultural areas in the Midwestern United States and can run-off and seep into surrounding aquatic habitats where concentrations can reach over 300 ppb. It is known that acute exposures to 80 ppb atrazine cause lasting deficiencies in the chemoreception of food and mate odors. Since atrazine impairs chemosensory responses, the goal of this study was to determine the effect of atrazine on cells, including olfactory sensory neurons, located in the lateral antennules of crayfish.
View Article and Find Full Text PDFThe herbicide atrazine is heavily applied in the U.S. Midwest to control broadleaf weeds.
View Article and Find Full Text PDFChemical pollutants enter aquatic systems through numerous pathways (e.g., surface runoff and ground water contamination), thus associating these contaminant sources with varying hydrodynamic environments.
View Article and Find Full Text PDFThe presence of agricultural contaminants has been shown to disrupt olfactory-mediated behaviors in aquatic animals. We assessed the effects of atrazine on the ability of reproductively active (form I), male crayfish (Orconectes rusticus) to identify and respond to conspecific chemical signals involved in mating. Male crayfish were exposed to atrazine (80 ppb) and water (control) for 96 h.
View Article and Find Full Text PDFThe herbicide atrazine is known to impact negatively olfactory-mediated behaviors in aquatic animals. We have shown that atrazine exposure has deleterious effects on olfactory-mediated behavioral responses to food odors in crayfish; however, recovery of chemosensory abilities post-atrazine exposure has not been investigated. We examined whether crayfish (Orconectes virilis) recovered chemosensory abilities after a 96-h exposure to sublethal, environmentally relevant concentrations of 80 ppb (µg/L) atrazine.
View Article and Find Full Text PDFEnvironmental pollutants, found in aquatic ecosystems, have been shown to have an effect on olfactory-mediated behaviors including feeding, mate attraction, and other important social behaviors. Crayfish are polytrophic, meaning that they feed on and become prey for all levels of the aquatic food web as well as are also important for the transfer of energy between benthic and terrestrial food webs. Because crayfish are a keystone species, it is important to investigate any factors that may affect their population size.
View Article and Find Full Text PDFIn the tinfoil barb (Barbonymus schwanenfeldii; family Cyprinidae), we previously found that increased olfactory sensitivity to a female prostaglandin pheromone could induce sexual behavior display in juvenile fish treated with androgens. Here, we determined if this phenomenon is widespread among cyprinid fishes by adding 17alpha-methyltestosterone (MT) to aquaria containing juveniles of 4 cyprinid species (tinfoil barbs; redtail sharkminnows, Epalzeorhynchos bicolor; goldfish, Carassius auratus; zebrafish, Danio rerio) and then using electro-olfactogram (EOG) recordings and behavioral assays to determine if androgen treatment enhances pheromone detection and male sex behaviors. In all 4 cyprinids, MT treatment increased the magnitudes and sensitivities of EOG response to prostaglandins and, consistent with our initial study on tinfoil barbs, did not affect EOG responses to the free and conjugated steroid to which each species is most sensitive.
View Article and Find Full Text PDFChemical communication occurs when both originator (signaller) and one or more receiver(s) possess specializations for chemical exchange of information. Chemical information can be used by a wide variety of species to locate food and mates, avoid predators and engage in social interactions. In this review, we focus on chemical signalling between mates or cues from nest sites or hosts by selected aquatic pest species and indicate how chemical information can be used to manage pests.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
May 2007
Previous studies have shown that the frequency of gill ventilation during exposure to estrone and gonadal extracts in the round goby (Neogobius melanostomus) is linked to olfactory sensory input. Control over gill ventilation may be a regulatory mechanism used for odorant sampling during reproductive periods. In this study, we examined changes in gill ventilation in osmic and anosmic (nasal occluded), reproductive and non-reproductive male round gobies to a putative steroidal pheromone estrone (1,3,5(10)-estratrien-3-ol-17-one).
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
June 2006
In teleostean fish, ventilation increases have been observed in response to low dissolved oxygen levels, visual stimuli, and gustatory cues. However, olfactory sensory input may also stimulate gill ventilation rate. We investigated whether olfactory sensory input mediates gill ventilation responses, as suggested by the observation that steroidal compounds detected by the olfactory system elicited increases in opercular activity in the perciform teleost, the round goby (Neogobius melanostomus).
View Article and Find Full Text PDFThis first comprehensive study of the peripheral olfactory organ from a representative of the large and economically important order of teleost fishes, the Perciformes, shows a compact structure with olfactory sensory neurons distributed widely throughout the olfactory chamber. The spatial organization of the nasal cavity in the bottom-dwelling round goby (Gobiidae, Neogobius melanostomus) was examined using impression material injection, immunocytochemistry, and transmission electron microscopy. The olfactory chamber contains a single olfactory lamella; prominent dorsocaudal lachrymal and ethmoidal accessory nasal sacs are situated ventrocaudal to the chamber.
View Article and Find Full Text PDF