Introduction: MRI-guided focused ultrasound (MRgFUS) thalamotomy of the nucleus ventralis intermedius (VIM) has emerged as a powerful and safe treatment modality for refractory essential tremor. While the efficacy of this technique has been extensively described, much remains unclear about how to optimize MRgFUS for patient quality of life (QoL), which may depend as much on a patient's adverse effect profile as on the magnitude of tremor suppression. Diffusion tensor imaging (DTI) has been used to help guide targeting strategies but can pose certain challenges for scalability.
View Article and Find Full Text PDFObjective: To assess the safety and efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment extra-abdominal desmoids.
Methods: A total of 105 patients with desmoid fibromatosis (79 females, 26 males; 35 ± 14 years) were treated with MRgFUS between 2011 and 2021 in three centers. Total and viable tumors were evaluated per patient at last follow-up after treatment.
Purpose: Magnetic resonance guided focused ultrasound (MRgFUS) treatment of tumors uses inter-sonication delays to allow heat to dissipate from the skin and other near-field tissues. Despite inter-sonication delays, treatment of tumors close to the skin risks skin burns. This work has designed and evaluated an open-source, conformable, skin-cooling system for body MRgFUS treatments to reduce skin burns and enable ablation closer to the skin.
View Article and Find Full Text PDFTranscranial focused ultrasound is a non-invasive therapeutic modality that can be used to treat essential tremor. Beams of energy are focused into a small spot in the thalamus, resulting in tissue heating and ablation. Here, we report on a rapid 3D numeric simulation framework that can be used to predict focal spot characteristics prior to the application of ultrasound.
View Article and Find Full Text PDFFive patients with painful vascular malformations of the extremities that were refractory to standard treatment and were confirmed as low-flow malformations on dynamic contrast-enhanced magnetic resonance (MR) imaging were treated with MR imaging-guided high intensity focused ultrasound. Daily maximum numeric rating scale scores for pain improved from 8.4 ± 1.
View Article and Find Full Text PDFBackground: Pancreatic adenocarcinoma is currently the fourth-leading cause of cancer-related death. Up to 60-90% of patients with advanced disease suffer cancer-related pain, severely impacting their quality of life. Current management involves primarily pharmacotherapy with opioid narcotics and celiac plexus neurolysis; unfortunately, both approaches offer transient relief and cause undesired side-effects.
View Article and Find Full Text PDFObjectives: To assess the feasibility, safety and preliminary efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment of extra-abdominal desmoid tumours.
Methods: Fifteen patients with desmoid fibromatosis (six males, nine females; age range, 7-66 years) were treated with MRgFUS, with seven patients requiring multiple treatments (25 total treatments). Changes in viable and total tumour volumes were measured after treatment.
Purpose: To reconstruct proton resonance frequency-shift temperature maps free of chemical shift distortions.
Theory And Methods: Tissue heating created by thermal therapies such as focused ultrasound surgery results in a change in proton resonance frequency that causes geometric distortions in the image and calculated temperature maps, in the same manner as other chemical shift and off-resonance distortions if left uncorrected. We propose an online-compatible algorithm to correct these distortions in 2DFT and echo-planar imaging acquisitions, which is based on a k-space signal model that accounts for proton resonance frequency change-induced phase shifts both up to and during the readout.
Background: MR-guided high-intensity focused ultrasound is a noninvasive treatment modality that uses focused ultrasound waves to thermally ablate tumors within the human body while minimizing side effects to surrounding healthy tissues. This technology is FDA-approved for certain tumors and has potential to be a noninvasive treatment option for extremity soft tissue tumors. Development of treatment modalities that achieve tumor control, decrease morbidity, or both might be of great benefit for patients.
View Article and Find Full Text PDF