Publications by authors named "Rachele Antonacci"

In this paper, we report a comprehensive and consistent annotation of the locus encoding the β-chain of the equine T-cell receptor (TRB), as inferred from recent genome assembly using bioinformatics tools. The horse TRB locus spans approximately 1 Mb, making it the largest locus among the mammalian species studied to date, with a significantly higher number of genes related to extensive duplicative events. In the region, 136 TRBV (belonging to 29 subgroups), 2 TRBD, 13 TRBJ, and 2 TRBC genes, were identified.

View Article and Find Full Text PDF

The genus is the only extant genus of the Equidae family, which belongs to Perissodactyla, an order of mammals characterized by an odd number of toes (odd-toes ungulates). Taking advantage of the latest release of the genome assembly, we studied, for the first time in two organisms belonging to the genus, the horse () and the donkey (), the T cell receptor gamma (TRG) locus encoding the gamma chain of the γδ T cell receptor. Forty-five Variable (TRGV) genes belonging to the seven IMGT-NC validated mammalian TRGV subgroups, 25 Joining (TRGJ) and 17 Constant (TRGC) genes organized in 17 V-J-(J)-C cassettes, in tandem on about 1100 Kb, characterize the horse TRG locus, making the horse TRG locus the one with the greatest extension and with a significantly higher number of genes than the orthologous loci of the other mammalian species.

View Article and Find Full Text PDF

The Camelidae species occupy an important immunological niche within the humoral as well as cell mediated immune response. Although recent studies have highlighted that the somatic hypermutation (SHM) shapes the T cell receptor gamma (TRG) and delta (TRD) repertoire in , it is still unclear how γδ T cells use the TRG/TRD receptors and their respective variable V-GAMMA and V-DELTA domains to recognize antigen in an antibody-like fashion. Here we report about 3D structural analyses of the human and dromedary γδ T cell receptor.

View Article and Find Full Text PDF

The domestic pig () is a species representative of the Suina, one of the four suborders within Cetartiodactyla. In this paper, we reported our analysis of the pig TRG locus in comparison with the loci of species representative of the Ruminantia, Tylopoda, and Cetacea suborders. The pig TRG genomic structure reiterates the peculiarity of the organization of Cetartiodactyla loci in TRGC "cassettes", each containing the basic V-J-J-C unit.

View Article and Find Full Text PDF

The bottlenose dolphin () belongs to the Cetartiodactyla and, similarly to other cetaceans, represents the most successful mammalian colonization of the aquatic environment. Here we report a genomic, evolutionary, and expression study of T cell receptor beta (TRB) genes. Although the organization of the dolphin TRB locus is similar to that of the other artiodactyl species, with three in tandem D-J-C clusters located at its 3' end, its uniqueness is given by the reduction of the total length due essentially to the absence of duplications and to the deletions that have drastically reduced the number of the germline TRBV genes.

View Article and Find Full Text PDF

The role of γδ T cells in vertebrate immunity is still an unsolved puzzle. Species such as humans and mice display a low percentage of these T lymphocytes (i.e.

View Article and Find Full Text PDF

Background: Goats (Capra hircus), one of the first domesticated species, are economically important for milk and meat production, and their broad geographical distribution reflects their successful adaptation to diverse environmental conditions. Despite the relevance of this species, the genetic research on the goat traits is limited compared to other domestic species. Thanks to the latest goat reference genomic sequence (ARS1), which is considered to be one of the most continuous assemblies in livestock, we deduced the genomic structure of the T cell receptor beta (TRB) and gamma (TRG) loci in this ruminant species.

View Article and Find Full Text PDF

T lymphocytes are the principal actors of vertebrates' cell-mediated immunity. Like B cells, they can recognize an unlimited number of foreign molecules through their antigen-specific heterodimer receptors (TRs), which consist of αβ or γδ chains. The diversity of the TRs is mainly due to the unique organization of the genes encoding the α, β, γ, and δ chains.

View Article and Find Full Text PDF

The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function.

View Article and Find Full Text PDF

T cells can be separated into two major subsets based on the heterodimer that forms their T cell receptors. αβ T cells have receptors consisting of α and β chains, while γδ T cells are composed of γ and δ chains. αβ T cells play an essential role within the adaptive immune responses against pathogens.

View Article and Find Full Text PDF

Heterogeneity in geomorphological and hydrographical conditions throughout the Mediterranean Sea could be the driving factors behind the significant differences between putative sub-populations, although the existence of a large panmictic population of striped dolphin Stenella coeruleoalba (Meyen 1833) in this marine region could not be excluded. However, understanding the ecological implications of such genetic differentiation is difficult, as inferences about gene flow are usually made on evolutionary time scales and not along the ecological time frame over which most management and conservation practices are applied. In fact, as stated by the IUCN Red List, in the case of species assessed as vulnerable, the degree of genetic exchange between populations within a biogeographic region and its ecological implications represent a fascinating challenge that should be very deeply explored.

View Article and Find Full Text PDF

The α/β T cell receptor (TR) is a complex heterodimer that recognizes antigenic peptides and binds to major histocompatibility complex (MH) molecules. Both α and β chains are encoded by different genes localized on two distinct chromosomal loci: TRA and TRB. The present study employed the recent release of the swine genome assembly to define the genomic organization of the TRB locus.

View Article and Find Full Text PDF

These data are presented in support of structural and evolutionary analysis of the published article entitled "The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina" (Antonacci et al., 2017) [1]. Here we describe the genomic structure and the gene content of the T cell receptor beta chain (TRB) locus in As in the other species of mammals, the general genomic organization of the dromedary TRB locus consists of a pool of TRBV genes located upstream of in tandem TRBD-J-C clusters, followed by a TRBV gene with an inverted transcriptional orientation.

View Article and Find Full Text PDF

The αβ T cells are important components of the adaptive immune system and can recognize a vast array of peptides presented by MHC molecules. The ability of these T cells to recognize the complex depends on the diversity of the αβ TR, which is generated by a recombination of specific Variable, Diversity and Joining genes for the β chain, and Variable and Joining genes for the α chain. In this study, we analysed the genomic structure and the gene content of the TRB locus in Camelus dromedarius, which is a species belonging to the Tylopoda suborder.

View Article and Find Full Text PDF

Background: The bottlenose dolphin (Tursiops truncatus) is a mammal that belongs to the Cetartiodactyla and have lived in marine ecosystems for nearly 60 millions years. Despite its popularity, our knowledge about its adaptive immunity and evolution is very limited. Furthermore, nothing is known about the genomics and evolution of dolphin antigen receptor immunity.

View Article and Find Full Text PDF

Background: In mammals, T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T cell receptors. Human and mouse display a low peripheral blood γδ T cell percentage ("γδ low species") while sheep, bovine and pig accounts for a high proportion of γδ T lymphocytes ("γδ high species"). While the T cell receptor alpha (TRA) and delta (TRD) genes and the genomic organization of the TRA/TRD locus has been determined in human and mouse, this information is still poorly known in artiodactyl species, such as sheep.

View Article and Find Full Text PDF

In previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals.

View Article and Find Full Text PDF

The present study identifies the genomic structure and the gene content of the T cell receptor beta (TRB) locus in the Oryctolagus cuniculus whole genome assembly. The rabbit locus spans less than 600 Kb and the general genomic organization is highly conserved with respect to other mammalian species. A pool of 74 TRB variable (TRBV) genes distributed in 24 subgroups are located upstream of two in tandem-aligned D-J-C gene clusters, each composed of one TRBD, six TRBJ genes, and one TRBC gene, followed by a single TRBV gene with an inverted transcriptional orientation.

View Article and Find Full Text PDF

In jawed vertebrates the V-(D)-J rearrangement is the main mechanism generating limitless variations of antigen-specific receptors, immunoglobulins (IGs), and T-cell receptors (TCRs) from few genes. Once the initial diversity is established in primary lymphoid organs, further diversification occurs in IGs by somatic hypermutation, a mechanism from which rearranged TCR genes were thought to be excluded. Here, we report the locus organization and expression of the T-cell receptor gamma (TCRG) genes in the Arabian camel (Camelus dromedarius).

View Article and Find Full Text PDF

In mammals, T cells develop along two discrete pathways characterized by expression of either the αβ or the γδT cell receptors. Human, mouse, and dog display a low peripheral blood γδ T cell percentage, while sheep accounts for a high proportion of γδ T lymphocytes. In all these species, the genomic organization of the T cell receptor gamma (TRG) locus is well known.

View Article and Find Full Text PDF

Here is an updated report on the genomic organization of T cell receptor beta (TRB) locus in the domestic dog (Canis lupus familiaris) as inferred from comparative genomics and expression analysis. The most interesting results we found were a second TRBD-J-C cluster, which is absent from the reference genome sequence, and the annotation of two additional TRBV genes. In dogs, TRB locus consists of a library of 37 TRBV genes positioned at the 5' end of two in tandem aligned D-J-C gene clusters, each composed of a single TRBD, 6 TRBJ and one TRBC genes, followed by a single TRBV gene with an inverted transcriptional orientation.

View Article and Find Full Text PDF

By a combination of rapid amplification of cDNA ends (RACE) and reverse transcription-polymerase chain reaction (RT-PCR) we identified three T cell receptor delta variable (TRDV) subgroups and five joining (TRDJ) genes expressed in spleen, tonsils and blood of Camelus dromedarius. We provide evidence that the high diversity in sequence and length of the third complementarity determining region (CDR3) is a major component of the TR delta chain variability. Moreover, the identification of the corresponding germline genes allowed us to find out for the first time in a mammalian organism that productively rearranged TRDV genes undergo somatic mutation: the mutation rate of the analysed TRDV4 region is 0.

View Article and Find Full Text PDF

Background: In most species of mammals, the TRB locus has the common feature of a library of TRBV genes positioned at the 5'- end of two in tandem aligned D-J-C gene clusters, each composed of a single TRBD gene, 6-7 TRBJ genes and one TRBC gene. An enhancer located at the 3'end of the last TRBC and a well-defined promoter situated at the 5'end of the TRBD gene and/or a undefined promoter situated at the 5'end of the TRBD2 are sufficient to generate the full recombinase accessibility at the locus. In ruminant species, the 3'end of the TRB locus is characterized by the presence of three D-J-C clusters, each constituted by a single TRBD, 5-7 TRBJ and one TRBC genes with the center cluster showing a structure combined with the clusters upstream and downstream, suggesting that a unequal crossover occurred in the duplication.

View Article and Find Full Text PDF

Background: In humans and mice ("gammadelta low species") less than 5% of the peripheral blood T lymphocytes are gamma/delta T cells, whereas in chicken and artiodactyls ("gammadelta high species") gamma/delta T cells represent about half of the T cells in peripheral blood. In cattle and sheep (Bovidae) two paralogous T cell receptor gamma loci (TRG1 and TRG2) have been found. TRG1 is located on 4q3.

View Article and Find Full Text PDF