Publications by authors named "Rachel Z Tsan"

The transforming growth factor alpha (TGFalpha)/epidermal growth factor receptor (EGFR) signaling pathway appears to play a critical role in colon cancer progression, but the cellular and molecular mechanisms that contribute to metastasis remain unknown. KM12C colon cancer cell clones expressing high (C9) or negligible (C10) levels of TGFalpha were implanted into the cecal walls of nude mice. C9 tumors formed autocrine and paracrine EGFR networks, whereas C10 tumors were unable to signal through EGFR.

View Article and Find Full Text PDF

The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-alpha) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR).

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) has been extensively targeted in the treatment of non-small cell lung cancer, producing responses in a small number of patients. To study the role of ligand expression in mediating response to EGFR antagonism, we injected NCI-H441 [EGFR and EGF/transforming growth factor-alpha (TGF-alpha) positive] or PC14-PE6 (EGFR positive and EGF/TGF-alpha negative) human lung adenocarcinoma cells into the lungs of nude mice. We randomized the mice to receive treatment with the EGFR tyrosine kinase inhibitors gefitinib or AEE788 or vehicle.

View Article and Find Full Text PDF

Purpose: We determined whether the administration of the tyrosine kinase inhibitor, AEE788, which targets the epidermal growth factor receptor and the vascular endothelial growth factor receptor, alone or in combination with paclitaxel, can inhibit progressive growth of human ovarian carcinoma in the peritoneal cavity of female nude mice.

Experimental Design: Western blot analysis and immunohistochemical analysis identified the optimal dose and schedule of AEE788 therapy. In several different experiments, paclitaxel-sensitive and paclitaxel-resistant human ovarian carcinoma cells were injected into the peritoneal cavity of nude mice.

View Article and Find Full Text PDF

The activation of the microvascular endothelial cell platelet-derived growth factor (PDGF) receptor (PDGF-R) by PDGF has been implicated in neoplastic angiogenesis. Here, we established cultures of murine bone microvascular endothelial cells and examined their response to stimulation with PDGF BB ligand and to blockade of PDGF-R signaling with the tyrosine kinase inhibitor STI571 (Gleevec). The addition of STI571 to cultures of bone endothelial cells blocked PDGF BB-induced phosphorylation in a dose-dependent manner and completely abrogated the activation of downstream targets Akt and ERK1/2.

View Article and Find Full Text PDF

Microvascular endothelial cells play a critical role in tumor progression and metastasis by forming capillary networks that encourage tumor growth and by promoting the attachment of circulating tumor cells to the vascular wall of distant tissues. Efforts to study the molecular mechanisms that mediate these complex processes in different anatomical compartments have been impeded by difficulties in the isolation and propagation of endothelial cells from different organs. To overcome these limitations, we used two-color flow cytometry to identify and select microvascular endothelial cells from primary cultures obtained from different organs of mice whose tissues harbor a temperature-sensitive SV40 large T antigen (H-2K(b)-tsA58 mice; ImmortoMice).

View Article and Find Full Text PDF