Biallelic pathogenic variants in cause a fatal autosomal recessive multisystem disorder characterized by recurrent autoinflammation, hypomyelination, progressive neurodegeneration, microcephaly, failure to thrive, liver dysfunction, respiratory chain defects and accumulation of glycogen in skeletal muscle. No missense variants in have been reported to date.We report a 6-year-old boy with microcephaly, global developmental delays, lower limb spasticity with hyperreflexia, epilepsy, abnormal brain MRI, failure to thrive, recurrent fevers and transaminitis.
View Article and Find Full Text PDFCanonical splice site variants (CSSVs) are often presumed to cause loss-of-function (LoF) and are assigned very strong evidence of pathogenicity (according to American College of Medical Genetics/Association for Molecular Pathology criterion PVS1). The exact nature and predictability of splicing effects of unselected rare CSSVs in blood-expressed genes are poorly understood. We identified 168 rare CSSVs in blood-expressed genes in 112 individuals using genome sequencing, and studied their impact on splicing using RNA sequencing (RNA-seq).
View Article and Find Full Text PDFSetleis syndrome (SS), or focal facial dermal dysplasia type III (FFDD3, MIM #227260), is an autosomal recessive condition caused by biallelic loss-of-function variants in TWIST2. It is characterized by bitemporal atrophic skin lesions and distinctive facial features. Individuals with de novo or inherited duplication or triplication of the chromosomal region 1p36.
View Article and Find Full Text PDFPurpose: RABGAP1 is a GTPase-activating protein implicated in a variety of cellular and molecular processes, including mitosis, cell migration, vesicular trafficking, and mTOR signaling. There are no known Mendelian diseases caused by variants in RABGAP1.
Methods: Through GeneMatcher, we identified 5 patients from 3 unrelated families with homozygous variants in the RABGAP1 gene found on exome sequencing.
Ehlers-Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders characterized by hyperextensible skin, hypermobile joints, easy bruisability, and fragility of the connective tissues. The diagnosis is based on clinical assessment and phenotype-guided genetic testing. Most EDS subtypes can be confirmed by genetic testing except for hypermobile EDS.
View Article and Find Full Text PDF