Alzheimer's disease is a neurodegenerative disorder characterized by progressive amyloid plaque accumulation, tau tangle formation, neuroimmune dysregulation, synapse an neuron loss, and changes in neural circuit activation that lead to cognitive decline and dementia. Early molecular and cellular disease-instigating events occur 20 or more years prior to presentation of symptoms, making them difficult to study, and for many years amyloid-β, the aggregating peptide seeding amyloid plaques, was thought to be the toxic factor responsible for cognitive deficit. However, strategies targeting amyloid-β aggregation and deposition have largely failed to produce safe and effective therapies, and amyloid plaque levels poorly correlate with cognitive outcomes.
View Article and Find Full Text PDFNeuroinflammation and the underlying dysregulated immune responses of microglia actively contribute to the progression and, likely, the initiation of Alzheimer's disease (AD). Fine-tuned therapeutic modulation of immune dysfunction to ameliorate disease cannot be achieved without the characterization of diverse microglial states that initiate unique, and sometimes contradictory, immune responses that evolve over time in chronic inflammatory environments. Because of the functional differences between human and murine microglia, untangling distinct, disease-relevant reactive states and their corresponding effects on pathology or neuronal health may not be possible without the use of human cells.
View Article and Find Full Text PDF