Axonal dystrophy, indicative of perturbed axonal transport, occurs early during Alzheimer's disease (AD) pathogenesis. Little is known about the mechanisms underlying this initial sign of the pathology. This study proves that Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) loss of function, due to genetic deletion or a rare variant that cosegregates with late-onset AD, disrupts the axonal trafficking of the β-site APP-cleaving enzyme 1 (BACE1) resulting in its accumulation in axonal swellings in cultured neurons and in vivo.
View Article and Find Full Text PDFBackground: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aβ), the toxic peptide that accumulates in the brains of Alzheimer's disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo.
View Article and Find Full Text PDF