Publications by authors named "Rachel W Martin"

In this tutorial paper, we describe some basic principles and practical considerations for designing probe circuits for NMR or MRI. The goal is building a bridge from material that is familiar from undergraduate physics courses to more specialized information needed to put together and tune a resonant circuit for magnetic resonance. After a brief overview of DC and AC circuits, we discuss the properties of circuit elements used in an NMR probe and how they can be assembled into building blocks for multi-channel circuits.

View Article and Find Full Text PDF

Prolyl oligopeptidases from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and we find that, in the case of prolyl oligopeptidases, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure.

View Article and Find Full Text PDF

Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and βγ) to contain little cysteine.

View Article and Find Full Text PDF

We describe an automated hands-off bench testing method for measuring the magnetic field profile of transceiver coils for nuclear magnetic resonance (NMR). The scattering parameter (S-parameter) data is measured using a portable network analyzer, and the results are automatically exported to a computer for plotting and viewing. This assay dramatically reduces the time needed to measure the magnetic field (B) homogeneity profile of a transceiver coil while also improving accuracy relative to manual operation.

View Article and Find Full Text PDF

Premise: Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a chemical imaging method that can visualize spatial distributions of particular molecules. Plant tissue imaging has so far mostly used cryosectioning, which can be impractical for the preparation of large-area imaging samples, such as full flower petals. Imaging unsectioned plant tissue presents its own difficulties in extracting metabolites to the surface due to the waxy cuticle.

View Article and Find Full Text PDF

Understanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria.

View Article and Find Full Text PDF

The main protease of SARS-CoV-2 (M) plays a critical role in viral replication; although it is relatively conserved, M has nevertheless evolved over the course of the COVID-19 pandemic. Here, we examine phenotypic changes in clinically observed variants of M, relative to the originally reported wild-type enzyme. Using atomistic molecular dynamics simulations, we examine effects of mutation on protein structure and dynamics.

View Article and Find Full Text PDF

Cataract, a clouding of the eye lens from protein precipitation, affects millions of people every year. The lens proteins, the crystallins, show extensive post-translational modifications (PTMs) in cataractous lenses. The most common PTMs, deamidation and oxidation, promote crystallin aggregation; however, it is not clear precisely how these PTMs contribute to crystallin insolubilization.

View Article and Find Full Text PDF

The emerging technique of mid-infrared optical coherence tomography (MIR-OCT) takes advantage of the reduced scattering of MIR light in various materials and devices, enabling tomographic imaging at deeper penetration depths. Because of challenges in MIR detection technology, the image acquisition time is, however, significantly longer than for tomographic imaging methods in the visible/near-infrared. Here we demonstrate an alternative approach to MIR tomography with high-speed imaging capabilities.

View Article and Find Full Text PDF

Ionizing radiation has dramatic effects on living organisms, causing damage to proteins, DNA, and other cellular components. γ radiation produces reactive oxygen species (ROS) that damage biological macromolecules. Protein modification due to interactions with hydroxyl radical is one of the most common deleterious effects of radiation.

View Article and Find Full Text PDF

Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail-an effect that is especially acute for topological representations such as protein structure networks (PSNs).

View Article and Find Full Text PDF

The hydroxyl radical is the primary reactive oxygen species produced by the radiolysis of water and is a significant source of radiation damage to living organisms. Mobility of the hydroxyl radical at low temperatures and/or high pressures is hence a potentially important factor in determining the challenges facing psychrophilic and/or barophilic organisms in high-radiation environments (e.g.

View Article and Find Full Text PDF

Static light scattering is a popular physical chemistry technique that enables calculation of physical attributes such as the radius of gyration and the second virial coefficient for a macromolecule (e.g., a polymer or a protein) in solution.

View Article and Find Full Text PDF

Over the course of its history, the field of nuclear magnetic resonance spectroscopy has been characterized by alternating periods of intensive instrumentation development and rapid expansion into new chemical application areas. NMR is now both a mainstay of routine analysis for laboratories at all levels of education and research. On the other hand, new instrumentation and methodological advances promise expanded functionality in the future.

View Article and Find Full Text PDF

Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization.

View Article and Find Full Text PDF

The highly infectious disease COVID-19 caused by the SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail.

View Article and Find Full Text PDF

βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions.

View Article and Find Full Text PDF

α-Crystallins are small heat-shock proteins that act as holdase chaperones. In humans, αA-crystallin is expressed only in the eye lens, while αB-crystallin is found in many tissues. α-Crystallins have a central domain flanked by flexible extensions and form dynamic, heterogeneous oligomers.

View Article and Find Full Text PDF

Amyloid fibril formation is central to the etiology of a wide range of serious human diseases, such as Alzheimer's disease and prion diseases. Despite an ever growing collection of amyloid fibril structures found in the Protein Data Bank (PDB) and numerous clinical trials, therapeutic strategies remain elusive. One contributing factor to the lack of progress on this challenging problem is incomplete understanding of the mechanisms by which these locally ordered protein aggregates self-assemble in solution.

View Article and Find Full Text PDF

The SARS-CoV-2 main protease (M) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new M mutations arising over time. Identification and structural characterization of M variants is thus critical for robust inhibitor design.

View Article and Find Full Text PDF

The Droserasins, aspartic proteases from the carnivorous plant , contain a 100-residue plant-specific insert (PSI) that is post-translationally cleaved and independently acts as an antimicrobial peptide. PSIs are of interest not only for their inhibition of microbial growth, but also because they modify the size of lipid vesicles and strongly interact with biological membranes. PSIs may therefore be useful for modulating lipid systems in NMR studies of membrane proteins.

View Article and Find Full Text PDF

The SARS-CoV-2 main protease (M ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant selection pressure, with new M mutations arising over time. Identification and structural characterization of M variants is thus critical for robust inhibitor design.

View Article and Find Full Text PDF

Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers.

View Article and Find Full Text PDF

Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of human γS-crystallin and its G18V mutation, which is linked to childhood cataracts, highlighting its tendency to aggregate and form cataracts.
  • Researchers created a new variant, γS-G18A, to examine the binding selectivity of the holdase chaperone protein αB-crystallin, which does not interact with the wild-type γS but does with the G18V variant.
  • Results showed that γS-G18A has slight structural changes and reduced thermal stability but is not bound by αB-crystallin, indicating its ability to differentiate between variants that lead to aggregation and those that maintain function.
View Article and Find Full Text PDF