SiRNAs can cause unintended gene silencing due to miRNA-like effects because of the similarity in function of an siRNA guide strand and a miRNA. Here we evaluate the effect on miRNA-like off targeting of introducing the adenosine derivative 7-EAA and triazoles prepared from 7-EAA at different positions in an siRNA guide strand. We find that a sterically demanding triazole placed in the RNA duplex major groove at position six of the guide strand dramatically reduces miRNA-like off targeting potency.
View Article and Find Full Text PDFShort interfering RNA (siRNA)-triggered gene knockdown through the RNA interference (RNAi) pathway is widely used to study gene function, and siRNA-based therapeutics are in development. However, as the guide strand of an siRNA can function like a natural microRNA (miRNA), siRNAs often repress hundreds of off-target transcripts with complementarity only to the seed region (nucleotides 2-8) of the guide strand. Here, we describe novel guide strand 3'-end modifications derived from 1-ethynylribose (1-ER) and copper-catalyzed azide-alkyne cycloaddition reactions and evaluate their impact on target versus miRNA-like off-target knockdown.
View Article and Find Full Text PDFShort interfering RNAs (siRNAs) are promising therapeutics that make use of the RNA interference (RNAi) pathway, but liabilities arising from the native RNA structure necessitate chemical modification for drug development. Advances in the structural characterization of components of the human RNAi pathway have enabled structure-guided optimization of siRNA properties. Here we report the 2.
View Article and Find Full Text PDFImmune stimulation triggered by siRNAs is one of the major challenges in the development of safe RNAi-based therapeutics. Within an immunostimulatory siRNA sequence, this hurdle is commonly addressed by using ribose modifications (e.g.
View Article and Find Full Text PDF8-Alkoxyadenosines have the potential to exist in anti or syn conformations around the glycosidic bond when paired opposite to U or G in the complementary strands, thereby placing the sterically demanding 8-alkoxy groups in the major or minor groove, respectively, of duplex RNA. These modified bases were used as "base switches" in the guide strands of an siRNA to prevent off-pathway protein binding during delivery via placement of the alkoxy group in the minor groove, while maintaining significant RNAi efficacy by orienting the alkoxy group in the major groove. 8-Alkoxyadenosine phosphoramidites were synthesized and incorporated into the guide strand of caspase 2 siRNA at four different positions: two in the seed region, one at the cleavage junction, and another nearer to the 3'-end of the guide strand.
View Article and Find Full Text PDF