Healthcare disparities in genomic medicine are well described. Despite some improvements, we continue to see fewer individuals of African American, Asian, and Hispanic ancestry undergo genetic counseling and testing compared to those of European ancestry. It is well established that variant of uncertain significance (VUS) rates are higher among non-European ancestral groups undergoing multi-gene hereditary cancer panel testing.
View Article and Find Full Text PDFHeterozygous (HET) TP53 pathogenic variants (PVs) are associated with Li-Fraumeni syndrome (LFS), a dominantly inherited condition causing high risk for sarcoma, breast, and other cancers. Recent reports describe patients without features of LFS and apparently HET TP53 PVs in blood cells but not fibroblasts (FBs), suggesting the variant occurred sporadically during hematopoiesis and rose to high allele fraction through clonal expansion. To explore possible clonal hematopoiesis in patients undergoing hereditary cancer testing, FB testing was performed for patients with apparently HET or mosaic TP53 PVs identified in blood, oral rinse, or buccal specimens via next-generation sequencing panels.
View Article and Find Full Text PDFBackground: Genes in the homologous recombination pathway have shown varying results in the literature regarding ovarian cancer (OC) association. Recent case-control studies have used allele counts alone to quantify genetic associations with cancer.
Methods: A retrospective case-control study was performed on 6,182 women with OC referred for hereditary cancer multi-gene panel testing (cases) and 4,690 mothers from trios who were referred for whole-exome sequencing (controls).
Importance: CDH1 pathogenic variants have been estimated to confer a 40% to 70% and 56% to 83% lifetime risk for gastric cancer in men and women, respectively. These are likely to be overestimates owing to ascertainment of families with multiple cases of gastric cancer. To our knowledge, there are no penetrance estimates for CDH1 without this ascertainment bias.
View Article and Find Full Text PDFBiallelic pathogenic variants (PVs) in MUTYH cause MUTYH-Associated Polyposis (MAP), which displays phenotypic overlap with other hereditary colorectal cancer (CRC) syndromes including Familial Adenomatous Polyposis (FAP) and Lynch syndrome. We report the phenotypic spectrum of MAP in the context of multi-gene hereditary cancer panel testing. Genetic testing results and clinical histories were reviewed for individuals with biallelic MUTYH PVs detected by panel testing at a single commercial molecular diagnostic laboratory.
View Article and Find Full Text PDFObjective: The recognition of genes implicated in ovarian cancer risk beyond BRCA1, BRCA2, and the Lynch syndrome genes has increased the variety of testing options available to providers and patients. We report the frequency of pathogenic variants identified among individuals with ovarian cancer undergoing clinical genetic testing via a multi-gene hereditary cancer panel.
Methods: Genetic testing of up to 32 genes using a hereditary cancer panel was performed on 4439 ovarian cancer cases, and results were analyzed for frequency of pathogenic variants.
Background: Knowledge of a germline pathogenic/likely pathogenic variant (PV) may inform breast cancer management. BRCA1/2 PV often impact surgical decisions, but data for multi-gene panel testing are lacking. Expedited genetic testing reduces turn-around times based on request for treatment-related decision making.
View Article and Find Full Text PDFPurpose: Germ-line testing for panels of cancer genes using next-generation sequencing is becoming more common in clinical care. We report our experience as a clinical laboratory testing both well-established, high-risk cancer genes (e.g.
View Article and Find Full Text PDFObjective: We sought to determine the positive predictive value (PPV) of noninvasive prenatal screening (NIPS) for various aneuploidies based on cases referred for follow-up cytogenetic testing. Secondarily, we wanted to determine the false-negative (FN) rate for those cases with a negative NIPS result.
Study Design: We compared the cytogenetic findings (primarily from chromosome analysis) from 216 cases referred to our laboratories with either a positive or negative NIPS result, and classified NIPS results as true positive, false positive, true negative, or FN.
Interstitial deletions of chromosome 6q are a relatively rare finding. Deletions have ranged from the loss of a single band to larger deletions spanning multiple bands. The clinical phenotype varies, but some features commonly seen include cardiac anomalies, hypotonia, facial dysmorphism and mental retardation.
View Article and Find Full Text PDF