Background: The objective of this pilot study was to identify frequency-dependent effects of respiratory-gated auricular vagus afferent nerve stimulation (RAVANS) on the regulation of blood pressure and heart rate variability in hypertensive subjects and examine potential differential effects by sex/gender or race.
Methods: Twenty hypertensive subjects (54.55 ± 6.
An electrochemical platform for generating and controlling a localized pH microenvironment on demand is proposed by employing a closed-loop control algorithm based on an iridium oxide pH sensor input. We use a combination of solution-borne quinones and galvanostatic excitation on a prepatterned indium tin oxide (ITO) working electrode to modulate pH within a very well confined, small volume of solution close to the electrode surface. We demonstrate that the rate of pH change can be controlled at up to 2 pH s with an excellent repeatability (±0.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
The objective of this study was to determine potential effects of Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) on cardiac autonomic activity in hypertensive patients.20 hypertensive subjects (57.3±6.
View Article and Find Full Text PDFGlassy carbon (GC) electrodes are well-known to contain oxygenated functional groups such as phenols, carbonyls, and carboxylic acids on their surface. The effects of these groups on voltammetry in aqueous solution are well-studied, but there has been little discussion of their possible effects in nonaqueous solution. In this study, we show that the acidic functional groups, particularly phenols, are likely causes of anomalous features often seen in the voltammetry of quinones in nonaqueous solution.
View Article and Find Full Text PDF