Background: Hepatic hydrothorax (HH) is an uncommon and difficult-to-manage complication of cirrhosis with limited treatment options.
Aim: To define the clinical outcomes of patients presenting with HH managed with current standards-of-care and to identify factors associated with mortality.
Methods: Cirrhotic patients with HH presenting to 3 tertiary centres from 2010 to 2018 were retrospectively identified.
Wheat (Triticum aestivum) is considered anoxia intolerant but it shows variance in anoxia responses between genotypes and environmental treatments. We firstly examined 4 day old seedlings of five wheat genotypes in response to anoxia at 15 °C and 28 °C by assessing growth rate, tissue damage and changes in metabolite abundances. Significant genotypic variations in anoxia tolerance were observed, especially at 28 °C.
View Article and Find Full Text PDFFloods can rapidly submerge plants, limiting oxygen to the extent that oxidative phosphorylation no longer generates adequate ATP supplies. Low-oxygen tolerant plants, such as rice, are able to adequately respond to low oxygen by successfully remodelling primary and mitochondrial metabolism to partially counteract the energy crisis that ensues. In this review, we discuss how plants respond to low-oxygen stress at the transcriptomic, proteomic, metabolomic and enzyme activity levels, particularly focusing on mitochondria and interacting pathways.
View Article and Find Full Text PDFRice (Oryza sativa L.) is both a major crop species and the key model grass for molecular and physiological research. Mitochondria are important in rice, as in all crops, as the main source of ATP for cell maintenance and growth.
View Article and Find Full Text PDFAnoxia can occur in crop fields when flooding forms a physical barrier that reduces oxygen availability. Rice, but not wheat, can germinate and elongate its coleoptile under anoxia, providing an excellent model for understanding mechanisms of anoxia tolerance. We have shown differential molecular responses of rice and wheat coleoptiles to anoxia and discovered novel metabolic adaptations in amino acid metabolism for tissue tolerance.
View Article and Find Full Text PDFRice (Oryza sativa) and wheat (Triticum aestivum) are the most important starch crops in world agriculture. While both germinate with an anatomically similar coleoptile, this tissue defines the early anoxia tolerance of rice and the anoxia intolerance of wheat seedlings. We combined protein and metabolite profiling analysis to compare the differences in response to anoxia between the rice and wheat coleoptiles.
View Article and Find Full Text PDF