Biocatalysis is important in the discovery, development, and manufacture of pharmaceuticals. However, the identification of enzymes for target transformations of interest requires major screening efforts. Here, we report a structure-based computational workflow to prioritize protein sequences by a score based on predicted activities on substrates, thereby reducing a resource-intensive laboratory-based biocatalyst screening.
View Article and Find Full Text PDFDespite the increasing use of biocatalysis for organic synthesis, there are currently no databases that adequately capture synthetic biotransformations. The lack of a biocatalysis database prevents accelerating biocatalyst characterization efforts from being leveraged to quickly identify candidate enzymes for reactions or cascades, slowing their development. The RetroBioCat Database (available at retrobiocat.
View Article and Find Full Text PDFThe development of efficient and sustainable methods for the synthesis of nitrogen heterocycles is an important goal for the chemical industry. In particular, substituted chiral piperidines are prominent targets due to their prevalence in medicinally relevant compounds and their precursors. A potential biocatalytic approach to the synthesis of this privileged scaffold would be the asymmetric dearomatization of readily assembled activated pyridines.
View Article and Find Full Text PDFThe unique ability of the 'electrochemical leaf' (e-Leaf) to drive and control nanoconfined enzyme cascades bidirectionally, while directly monitoring their rate in real-time as electrical current, is exploited to achieve deracemisation and stereoinversion of secondary alcohols using a single electrode in one pot. Two alcohol dehydrogenase enzymes with opposing enantioselectivities, from (selective for ) and (selective for ) are driven bidirectionally coupling to the fast and quasi-reversible interconversion of NADP/NADPH catalysed by ferredoxin NADP reductase - all enzymes being co-entrapped in a nanoporous indium tin oxide electrode. Activity of the enzyme depends on the binding of a non-catalytic Mg, allowing it to be switched off after an oxidative half-cycle, by adding EDTA - the -selective enzyme, with a tightly-bound Zn, remaining fully active.
View Article and Find Full Text PDFThe importance of energized nanoconfinement for facilitating the study and execution of enzyme cascades that feature multiple exchangeable cofactors is demonstrated by experiments with carboxylic acid reductase (CAR), an enzyme that requires both NADPH and ATP during a single catalytic cycle. Conversion of cinnamic acid to cinnamaldehyde by a package of four enzymes loaded into and trapped in the random nanopores of an indium tin oxide (ITO) electrode is driven and monitored through the simultaneous delivery of electrical and chemical energy. The electrical energy is transduced by ferredoxin NADP reductase, which undergoes rapid, direct electron exchange with ITO and regenerates NADP(H).
View Article and Find Full Text PDFChiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals, yet their preparation often relies on low-efficiency multi-step synthesis. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported.
View Article and Find Full Text PDFThe enantioselective oxidation of 2° alcohols to ketones is an important reaction in synthetic chemistry, especially if it can be achieved using O -driven alcohol oxidases under mild reaction conditions. However to date, oxidation of secondary alcohols using alcohol oxidases has focused on activated benzylic or allylic substrates, with unactivated secondary alcohols showing poor activity. Here we show that cholesterol oxidase (EC 1.
View Article and Find Full Text PDFCovering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
View Article and Find Full Text PDFFinding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening.
View Article and Find Full Text PDFImine reductases (IREDs) have shown great potential as catalysts for the asymmetric synthesis of industrially relevant chiral amines, but a limited understanding of sequence activity relationships makes rational engineering challenging. Here, we describe the characterization of 80 putative and 15 previously described IREDs across 10 different transformations and confirm that reductive amination catalysis is not limited to any particular subgroup or sequence motif. Furthermore, we have identified another dehydrogenase subgroup with chemoselectivity for imine reduction.
View Article and Find Full Text PDFThe generation of immobilised oxidase biocatalysts allowing multifunctional oxidation of valuable chemicals using molecular oxygen is described. Engineered galactose oxidase (GOase) variants M and M, an engineered choline oxidase (AcCO6) and monoamine oxidase (MAO-N D9) displayed long-term stability and reusability over several weeks when covalently attached on a solid support, outperforming their free counterparts in terms of stability (more than 20 fold), resistance to heat at 60 °C, and tolerance to neat organic solvents such as hexane and toluene. These robust heterogenous oxidation catalysts can be recovered after each reaction and be reused multiple times for the oxidation of different substrates.
View Article and Find Full Text PDFIn living cells, redox chains rely on nanoconfinement using tiny enclosures, such as the mitochondrial matrix or chloroplast stroma, to concentrate enzymes and limit distances that nicotinamide cofactors and other metabolites must diffuse. In a chemical analogue exploiting this principle, nicotinamide adenine dinucleotide phosphate (NADPH) and NADP are cycled rapidly between ferredoxin-NADP reductase and a second enzyme-the pairs being juxtaposed within the 5-100 nm scale pores of an indium tin oxide electrode. The resulting electrode material, denoted (FNR+E2)@ITO/support, can drive and exploit a potentially large number of enzyme-catalysed reactions.
View Article and Find Full Text PDFThe alkylation of amines with either alcohols or carboxylic acids represents a mild and safe alternative to the use of genotoxic alkyl halides and sulfonate esters. Here we report two complementary one-pot systems in which the reductive aminase (RedAm) from Aspergillus oryzae is combined with either (i) a 1° alcohol/alcohol oxidase (AO) or (ii) carboxylic acid/carboxylic acid reductase (CAR) to affect N-alkylation reactions. The application of both approaches has been exemplified with respect to substrate scope and also preparative scale synthesis.
View Article and Find Full Text PDFStructure-guided directed evolution of choline oxidase has been carried out by using the oxidation of hexan-1-ol to hexanal as the target reaction. A six-amino-acid variant was identified with a 20-fold increased k compared to that of the wild-type enzyme. This variant enabled the oxidation of 10 mm hexanol to hexanal in less than 24 h with 100 % conversion.
View Article and Find Full Text PDFSynthesis of the chiral amine moiety is a key challenge for synthetic organic chemistry due to its prevalence in many biologically active molecules. Imine reductase and amine oxidase enzymes have enabled the biocatalytic synthesis of a host of chiral amine compounds. In this chapter, procedures for the synthesis of chiral amines using imine reductases (IREDs), the recently discovered IRED homologues reductive aminases, and amine oxidases (AOs) are described.
View Article and Find Full Text PDFthree complementary biocatalytic routes were examined for the synthesis of the cyclopropyl amine (1R,2S)-2, which is a key building block for the anti-thrombotic agent ticagrelor 1. By employing either a ketoreductase, amidase or lipase biocatalyst, the key building blocks for synthesis of the amine 2 were obtained in 99.9, 92.
View Article and Find Full Text PDFThis discussion describes efforts to produce a stable, efficient electrocatalyst for four-electron O2 reduction through the direct attachment of fungal laccase, a 'blue' copper oxidase, to functionalised carbon electrode materials. Commercially available carbons, including fibrous and porous materials, offer important opportunities for achieving high conductivity over high surface areas that can be chemically functionalised. A promising approach for attaching laccase to a carbon surface is to use the diazonium coupling reaction to generate protrusive aromatic functionalities that can bind to hydrophobic residues close to the 'blue' Cu site: this site provides a fast, intramolecular electron relay into the buried trinuclear Cu active site that converts O2 rapidly and cleanly to H2O.
View Article and Find Full Text PDFAttachment of substrate-like anthracene based units to the surface of pyrolytic graphite greatly enhances the adsorption of high-potential fungal laccases, 'blue' Cu enzymes that catalyse the four-electron reduction of O(2), providing a stable cathode for enzymatic biological fuel cells and electrochemical studies.
View Article and Find Full Text PDF