Publications by authors named "Rachel S Fletcher"

Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2, CALR or CALR peripheral blood allele burden ≥20% (EudraCT 2015-005497-38).

View Article and Find Full Text PDF

Supplementation with precursors of NAD has been shown to prevent and reverse insulin resistance, mitochondrial dysfunction, and liver damage in mouse models of diet-induced obesity. We asked whether the beneficial effects of supplementation with the NAD precursor nicotinamide riboside (NR) are dependent on mouse strain. We compared the effects of NR supplementation on whole-body energy metabolism and mitochondrial function in mildly obese C57BL/6N and C57BL/6J mice, two commonly used strains to investigate metabolism.

View Article and Find Full Text PDF

Background: Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11β-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response.

View Article and Find Full Text PDF

Skeletal muscle is central to whole body metabolic homeostasis, with age and disease impairing its ability to function appropriately to maintain health. Inadequate NAD availability is proposed to contribute to pathophysiology by impairing metabolic energy pathway use. Despite the importance of NAD as a vital redox cofactor in energy production pathways being well-established, the wider impact of disrupted NAD homeostasis on these pathways is unknown.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD metabolome and if it can alter muscle mitochondrial bioenergetics.

View Article and Find Full Text PDF

The concept of replenishing or elevating NAD+ availability to combat metabolic disease and ageing is an area of intense research. This has led to a need to define the endogenous regulatory pathways and mechanisms cells and tissues utilise to maximise NAD+ availability such that strategies to intervene in the clinical setting are able to be fully realised. This review discusses the importance of different salvage pathways involved in metabolising the vitamin B3 class of NAD+ precursor molecules, with a particular focus on the recently identified nicotinamide riboside kinase pathway at both a tissue-specific and systemic level.

View Article and Find Full Text PDF

Objective: Augmenting nicotinamide adenine dinucleotide (NAD) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD. Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis.

View Article and Find Full Text PDF

Glucocorticoids are important for skeletal muscle energy metabolism, regulating glucose utilization, insulin sensitivity, and muscle mass. Nicotinamide adenine dinucleotide phosphate-dependent 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)-mediated glucocorticoid activation in the sarcoplasmic reticulum (SR) is integral to mediating the detrimental effects of glucocorticoid excess in muscle. 11β-Hydroxysteroid dehydrogenase type 1 activity requires glucose-6-phosphate transporter (G6PT)-mediated G6P transport into the SR for its metabolism by hexose-6-phosphate dehydrogenase (H6PDH) for NADPH generation.

View Article and Find Full Text PDF

Glucocorticoids (GCs) are potent regulators of energy metabolism. Chronic GC exposure suppresses brown adipose tissue (BAT) thermogenic capacity in mice, with evidence for a similar effect in humans. Intracellular GC levels are regulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity, which can amplify circulating GC concentrations.

View Article and Find Full Text PDF