Publications by authors named "Rachel R Chen"

Acid stress induced by the accumulation of organic acids during the fermentation of propionibacteria is a severe limitation in the microbial production of propionic acid (PA). To enhance the acid resistance of strains, the tolerance mechanisms of cells must first be understood. In this study, comparative genomic and transcriptomic analyses were conducted on wild-type and acid-tolerant Propionibacterium acidipropionici to reveal the microbial response of cells to acid stress during fermentation.

View Article and Find Full Text PDF

Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P.

View Article and Find Full Text PDF

Propionic acid (PA) is an important platform chemical in the food, agriculture, and pharmaceutical industries and is mainly biosynthesized by propionibacteria. Acid tolerance in PA-producing strains is crucial. In previous work, we investigated the acid tolerance mechanism of Propionibacterium acidipropionici at microenvironmental levels by analyzing physiological changes in the parental strain and three PA-tolerant mutants obtained by genome shuffling.

View Article and Find Full Text PDF

In this study, we fused six self-assembling amphipathic peptides (SAPs) with cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans to catalyze 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) production with cheap substrates, including maltose, maltodextrin, and soluble starch as glycosyl donors. The results showed that two fusion enzymes, SAP5-CGTase and SAP6-CGTase, increased AA-2G yields to 2.33- and 3.

View Article and Find Full Text PDF

In previous work, we constructed a recombinant Bacillus subtilis strain for microbial production of N-acetylglucosamine (GlcNAc), which has applications in nutraceuticals and pharmaceuticals. In this work, we improve GlcNAc production through modular engineering of B. subtilis.

View Article and Find Full Text PDF

Cyclodextrin glycosyltransferase (CGTase) is an important enzyme with multiple functions, in particular the production of cyclodextrins. It is also widely applied in baking and carbohydrate glycosylation because it participates in various types of catalytic reactions. New applications are being found with novel CGTases being isolated from various organisms.

View Article and Find Full Text PDF

High thermostability is required for alkaline α-amylases to maintain high catalytic activity under the harsh conditions used in textile production. In this study, we attempted to improve the thermostability of an alkaline α-amylase from Alkalimonas amylolytica through in silico rational design and systems engineering of disulfide bridges in the catalytic domain. Specifically, 7 residue pairs (P35-G426, Q107-G167, G116-Q120, A147-W160, G233-V265, A332-G370, and R436-M480) were chosen as engineering targets for disulfide bridge formation, and the respective residues were replaced with cysteines.

View Article and Find Full Text PDF

The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B.

View Article and Find Full Text PDF

2-O-d-Glucopyranosyl-l-ascorbic acid (AA-2G), a stable l-ascorbic acid derivative, is usually synthesized by cyclodextrin glycosyltransferase (CGTase), which contains nine substrate-binding subsites (from +2 to -7). In this study, iterative saturation mutagenesis (ISM) was performed on the -6 subsite residues (Y167, G179, G180, and N193) in the CGTase from Paenibacillus macerans to improve its specificity for maltodextrin, which is a cheap and easily soluble glycosyl donor for AA-2G synthesis. Site saturation mutagenesis of four sites-Y167, G179, G180, and N193-was first performed and revealed that four mutants-Y167S, G179R, N193R, and G180R-produced AA-2G yields higher than those of other mutant and wild-type CGTases.

View Article and Find Full Text PDF

In this work, we integrated terminal truncation and N-terminal oligopeptide fusion as a novel protein engineering strategy to improve specific activity and catalytic efficiency of alkaline α-amylase (AmyK) from Alkalimonas amylolytica. First, the C terminus or N terminus of AmyK was partially truncated, yielding 12 truncated mutants, and then an oligopeptide (AEAEAKAKAEAEAKAK) was fused at the N terminus of the truncated AmyK, yielding another 12 truncation-fusion mutants. The specific activities of the truncation-fusion mutants AmyKΔC500-587::OP and AmyKΔC492-587::OP were 25.

View Article and Find Full Text PDF

In this work, we attempted to synthesize homoeriodictyol by transferring one methyl group of S-adenosyl-L-methionine (SAM) to eriodictyol using flavone 3'-O-methyltransferase ROMT-9, which was produced by recombinant Yarrowia lipolytica. Specifically, the ROMT-9 gene from rice was synthesized and cloned into the multi-copy integrative vector pINA1297, and was further expressed in Y. lipolytica with a growth phase-dependent constitutive promoter hp4d.

View Article and Find Full Text PDF

Glucosamine (GlcN) and its acetylated derivative, N-acetylglucosamine (GlcNAc), are widely used in nutraceutical and pharmaceutical industries. Currently, GlcN and GlcNAc are mainly produced by hydrolysis from crab and shrimp shells, which can cause severe environmental pollution and carries the potential risk of allergic reactions. In this study, we attempted to achieve microbial production of GlcNAc by pathway engineering of Bacillus subtilis 168.

View Article and Find Full Text PDF

In previous work, three evolved Propionibacterium acidipropionici mutants with higher tolerant capacity of propionic acid (PA) were obtained by genome shuffling. Here, we attempted to unravel the acid-tolerant mechanism of P. acidipropionici by comparing the physiological changes between P.

View Article and Find Full Text PDF

Increasing concerns over limited petroleum resources and associated environmental problems are motivating the development of efficient cell factories to produce chemicals, fuels, and materials from renewable resources in an environmentally sustainable economical manner. Bacillus spp., the best characterized Gram-positive bacteria, possesses unique advantages as a host for producing microbial enzymes and industrially important biochemicals.

View Article and Find Full Text PDF

Propionic acid (PA) is an important chemical building block and is widely applied for organic synthesis, food, feedstuff, and pharmaceuticals. To date, the strains that can efficiently produce PA have included Propionibacterium thoenii, P. freudenreichii, and P.

View Article and Find Full Text PDF

Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.

View Article and Find Full Text PDF

In this work, the subsite-3 of cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was engineered to improve maltodextrin specificity for 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) synthesis. Specifically, the site-saturation mutagenesis of tyrosine 89, asparagine 94, aspartic acid 196, and aspartic acid 372 in subsite-3 was separately performed, and three mutants Y89F (tyrosine→phenylalanine), N94P (asparagine→proline), and D196Y (aspartic acid→tyrosine) produced higher AA-2G titer than the wild-type and the other mutants. Previously, we found the mutant K47L (lysine→leucine) also had a higher maltodextrin specificity.

View Article and Find Full Text PDF

Zymomonas mobilis is the only known microorganism that utilizes the Entner-Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden-Meyerhof-Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level.

View Article and Find Full Text PDF

In this study, we achieved the efficient synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) from soluble starch by fusing a carbohydrate-binding module (CBM) from Alkalimonas amylolytica α-amylase (CBMAmy) to cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans. One fusion enzyme, CGT-CBMAmy, was constructed by fusing the CBMAmy to the C-terminal region of CGTase, and the other fusion enzyme, CGTΔE-CBMAmy, was obtained by replacing the E domain of CGTase with CBMAmy. The two fusion enzymes were then used to synthesize AA-2G from soluble starch as a cheap and easily soluble glycosyl donor.

View Article and Find Full Text PDF

In this study, we constructed and expressed six fusion proteins composed of oligopeptides attached to the N terminus of the alkaline α-amylase (AmyK) from Alkalimonas amylolytica. The oligopeptides had various effects on the functional and structural characteristics of AmyK. AmyK-p1, the fusion protein containing peptide 1 (AEAEAKAKAEAEAKAK), exhibited improved specific activity, catalytic efficiency, alkaline stability, thermal stability, and oxidative stability compared with AmyK.

View Article and Find Full Text PDF

This work aims to improve the protein stability and catalytic efficiency of α-amylase from Bacillus subtilis under acidic conditions by site-directed mutagenesis. Based on the analysis of a three dimensional structure model, four basic histidine (His) residues His(222), His(275), His(293), and His(310) in the catalytic domain were selected as the mutation sites and were further replaced with acidic aspartic acid (Asp), respectively, yielding four mutants H222D, H275D, H293D, H310D. The mutant H222D was inactive.

View Article and Find Full Text PDF

In this work, the site saturation mutagenesis of tyrosine 195, tyrosine 260 and glutamine 265 in the cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase for maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G). Specifically, the site-saturation mutagenesis of three sites-tyrosine 195, tyrosine 260, and glutamine 265-was performed, and it was found that the resulting mutants (containing the mutations Y195S [tyrosine → serine], Y260R [tyrosine → arginine], and Q265K [glutamine → lysine]) produced higher AA-2G yields than the wild type and the other mutant CGTases when maltodextrin was used as the glycosyl donor. Furthermore, double and triple mutations were introduced, and four mutants (containing Y195S/Y260R, Y195S/Q265K, Y260R/Q265K, and Y260R/Q265K/Y195S) were obtained and evaluated for the capacity to produce AA-2G.

View Article and Find Full Text PDF

In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.

View Article and Find Full Text PDF

An alkaline α-amylase gene from alkaliphilic Alkalimonas amylolytica was synthesized based on the preferred codon usage of Escherichia coli and Pichia pastoris, respectively, and then was expressed in the according heterologous host, E. coli BL21 (DE3) and P. pastoris GS115.

View Article and Find Full Text PDF

Escherichia coli has been engineered to produce a variety of biofuel and biorefinery products. However, it can only produce these products from simple sugars, requiring large amounts of enzymes to depolymerize cellulose into monomer sugars. Engineering E.

View Article and Find Full Text PDF