Publications by authors named "Rachel Przeslawski"

Data are currently being used, and reused, in ecological research at an unprecedented rate. To ensure appropriate reuse however, we need to ask the question: "Are aggregated databases currently providing the right information to enable effective and unbiased reuse?" We investigate this question, with a focus on designs that purposefully favor the selection of sampling locations (upweighting the probability of selection of some locations). These designs are common and examples are those designs that have uneven inclusion probabilities or are stratified.

View Article and Find Full Text PDF

The impact of seismic surveys on the catchability of marine fish is a contentious issue, with some claims that seismic surveys may negatively affect catch rates. However little empirical evidence exists to quantify the impacts or identify the mechanisms of such impact. In this study, we used a 2-D seismic survey in the Gippsland Basin, Bass Strait, Australia in April 2015 as an opportunity to quantify fish behaviour (field-based) and commercial fisheries catch (desktop study) across the region before and after airgun operations.

View Article and Find Full Text PDF

Marine seismic surveys are an important tool to map geology beneath the seafloor and manage petroleum resources, but they are also a source of underwater noise pollution. A mass mortality of scallops in the Bass Strait, Australia occurred a few months after a marine seismic survey in 2010, and fishing groups were concerned about the potential relationship between the two events. The current study used three field-based methods to investigate the potential impact of marine seismic surveys on scallops in the region: 1) dredging and 2) deployment of Autonomous Underwater Vehicles (AUVs) were undertaken to examine the potential response of two species of scallops (Pecten fumatus, Mimachlamys asperrima) before, two months after, and ten months after a 2015 marine seismic survey; and 3) MODIS satellite data revealed patterns of sea surface temperatures from 2006-2016.

View Article and Find Full Text PDF

Marine reserves are becoming progressively more important as anthropogenic impacts continue to increase, but we have little baseline information for most marine environments. In this study, we focus on the Oceanic Shoals Commonwealth Marine Reserve (CMR) in northern Australia, particularly the carbonate banks and terraces of the Sahul Shelf and Van Diemen Rise which have been designated a Key Ecological Feature (KEF). We use a species-level inventory compiled from three marine surveys to the CMR to address several questions relevant to marine management: 1) Are carbonate banks and other raised geomorphic features associated with biodiversity hotspots? 2) Can environmental (depth, substrate hardness, slope) or biogeographic (east vs west) variables help explain local and regional differences in community structure? 3) Do sponge communities differ among individual raised geomorphic features? Approximately 750 sponge specimens were collected in the Oceanic Shoals CMR and assigned to 348 species, of which only 18% included taxonomically described species.

View Article and Find Full Text PDF

Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms.

View Article and Find Full Text PDF

Marine organisms are simultaneously exposed to anthropogenic stressors with likely interactive effects, including synergisms in which the combined effects of multiple stressors are greater than the sum of individual effects. Early life stages of marine organisms are potentially vulnerable to the stressors associated with global change, but identifying general patterns across studies, species and response variables is challenging. This review represents the first meta-analysis of multistressor studies to target early marine life stages (embryo to larvae), particularly between temperature, salinity and pH as these are the best studied.

View Article and Find Full Text PDF

Benthic marine invertebrates live in a multistressor world where stressor levels are, and will continue to be, exacerbated by global warming and increased atmospheric carbon dioxide. These changes are causing the oceans to warm, decrease in pH, become hypercapnic, and to become less saturated in carbonate minerals. These stressors have strong impacts on biological processes, but little is known about their combined effects on the development of marine invertebrates.

View Article and Find Full Text PDF

Climate change and ocean acidification will expose marine organisms to synchronous multiple stressors, with early life stages being potentially most vulnerable to changing environmental conditions. We simultaneously exposed encapsulated molluscan embryos to three abiotic stressors-acidified conditions, elevated temperate, and solar UV radiation in large outdoor water tables in a multifactorial design. Solar UV radiation was modified with plastic filters, while levels of the other factors reflected IPCC predictions for near-future change.

View Article and Find Full Text PDF

The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems.

View Article and Find Full Text PDF

The oligochaete Limnodrilus hoffmeisteri at Foundry Cove (FC), New York evolved genetic resistance to cadmium (Cd) and lost resistance after contaminated sediments were removed by dredging. Selection (on survival time in dissolved Cd) was used to generate tolerance to evaluate fitness cost, the commonplace expectation for evolutionary reversal. The hypothesis that gene flow from neighboring populations could "swamp" resistance was addressed by 16S rDNA sequences.

View Article and Find Full Text PDF