Publications by authors named "Rachel O Cohen"

It is now quite well accepted that charge separation in PS2 reaction centers starts predominantly from the accessory chlorophyll B(A) and not from the special pair P(680). To identify spectral signatures of B(A,) and to further clarify the process of primary charge separation, we compared the femtosecond-infrared pump-probe spectra of the wild-type (WT) PS2 core complex from the cyanobacterium Synechocystis sp. PCC 6803 with those of two mutants in which the histidine residue axially coordinated to P(B) (D2-His(197)) has been changed to Ala or Gln.

View Article and Find Full Text PDF

D1-Thr179, which overlies the reaction center chlorophyll Chl D1 of Photosystem II was replaced with His and Glu through site-directed mutation in Synechocystis sp. PCC 6803. Spectroscopic characterization of the mutants indicates that, compared to wild type, the main bleaching in the triplet-minus-singlet absorbance difference spectrum and the electrochromic band shift in the (P680 (+)Q A (-)-P680Q A) absorbance difference spectrum are displaced to the red by approximately 2 nm in the D1-Thr179His mutant and to the blue by approximately 1 nm in the D1-Thr179Glu mutant.

View Article and Find Full Text PDF

Site-directed mutations were constructed in photosystem II of Synechocystis sp. PCC6803 in which the axial ligand, D1-His198, of special pair chlorophyll PD1 was replaced with Gln and where D1-Thr179, which overlies monomeric chlorophyll ChlD1, was replaced with His. The D1-His198Gln mutation produces a 3nm displacement to the blue of the bleaching minimum in the Soret and in the Qy region of the (P+QA--PQA) absorbance difference spectrum.

View Article and Find Full Text PDF

Amino acid residue D1-Asp(170) of the D1-polypeptide of photosystem II was previously shown to be implicated in the binding and oxidation of the first manganese to be assembled into the Mn(4)Ca cluster of the oxygen-evolving complex (OEC). According to recent x-ray crystallographic structures of photosystem II, D1-Glu(333) is proposed to participate with D1-Asp(170) in the coordination of Mn4 of the OEC. Other residues in the C-terminal region of the D1-polypeptide are proposed to coordinate nearby manganese of the cluster.

View Article and Find Full Text PDF

In photosystem I, oxidation of reduced acceptor A(1)(-) through iron-sulfur cluster F(X) is biphasic with half-times of approximately 5-30 ns ("fast" phase) and approximately 150-300 ns ("slow" phase). Whether these biphasic kinetics reflect unidirectional electron transfer, involving only the PsaA-side phylloquinone or bi-directional electron transfer, involving both the PsaA- and PsaB-side phylloquinones, has been the source of some controversy. Brettel (Brettel, K.

View Article and Find Full Text PDF

Point mutations were introduced near the primary electron acceptor sites assigned to A0 in both the PsaA and PsaB branches of Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. The residues Met688PsaA and Met668PsaB, which provide the axial ligands to the Mg2+ of the eC-A3 and eC-B3 chlorophylls, were changed to leucine and asparagine (chlorophyll notation follows Jordan et al.

View Article and Find Full Text PDF

The X-ray crystal structure of photosystem I (PS I) depicts six chlorophyll a molecules (in three pairs), two phylloquinones, and a [4Fe-4S] cluster arranged in two pseudo C2-symmetric branches that diverge at the P700 special pair and reconverge at the interpolypeptide FX cluster. At present, there is agreement that light-induced electron transfer proceeds via the PsaA branch, but there is conflicting evidence whether, and to what extent, the PsaB branch is active. This problem is addressed in cyanobacterial PS I by changing Met688(PsaA) and Met668(PsaB), which provide the axial ligands to the Mg2+ of the eC-A3 and eC-B3-chlorophylls, to Leu.

View Article and Find Full Text PDF