Publications by authors named "Rachel Nlend Nlend"

The insulin-producing β cells of pancreatic islets are coupled by connexin36 (Cx36) channels. To investigate what controls the expression of this connexin, we have investigated its pattern during mouse pancreas development, and the influence of three transcription factors that are critical for β-cell development and differentiation. We show that (1) the Cx36 gene (Gjd2) is activated early in pancreas development and is markedly induced at the time of the surge of the transcription factors that determine β-cell differentiation; (2) the cognate protein is detected about a week later and is selectively expressed by β cells throughout the prenatal development of mouse pancreas; (3) a 2-kbp fragment of the Gjd2 promoter, which contains three E boxes for the binding of the bHLH factor Beta2/NeuroD1, ensures the expression of Cx36 by β cells; and (4) Beta2/NeuroD1 binds to these E boxes and, in the presence of the E47 ubiquitous cofactor, transactivates the Gjd2 promoter.

View Article and Find Full Text PDF

Many inherited diseases are associated with changed splicing patterns, and alternative splicing influences several biological processes as well as the replication of certain viral pathogens. For this reason, there is a broad interest in modulating individual splicing events for therapeutic purposes. Based on the small nuclear RNA (snRNA) U7, we have developed expression vectors for short antisense RNAs that accumulate in the cell nucleus where splicing occurs and that can very specifically modulate the splicing of individual exons.

View Article and Find Full Text PDF

Recent analyses of complete genomes have revealed that alternative splicing became more prevalent and important during eukaryotic evolution. Alternative splicing augments the protein repertoire--particularly that of the human genome--and plays an important role in the development and function of differentiated cell types. However, splicing is also extremely vulnerable, and defects in the proper recognition of splicing signals can give rise to a variety of diseases.

View Article and Find Full Text PDF

In spinal muscular atrophy (SMA), the leading genetic cause of early childhood death, the survival motor neuron 1 gene (SMN1) is deleted or inactivated. The nearly identical SMN2 gene has a silent mutation that impairs the utilization of exon 7 and the production of functional protein. It has been hypothesized that therapies boosting SMN2 exon 7 inclusion might prevent or cure SMA.

View Article and Find Full Text PDF

The transcription factor regulatory factor X (RFX)-3 regulates the expression of genes required for the growth and function of cilia. We show here that mouse RFX3 is expressed in developing and mature pancreatic endocrine cells during embryogenesis and in adults. RFX3 expression already is evident in early Ngn3-positive progenitors and is maintained in all major pancreatic endocrine cell lineages throughout their development.

View Article and Find Full Text PDF

Most cell types are functionally coupled by connexin (Cx) channels, i.e. exchange cytoplasmic ions and small metabolites through gap junction domains of their membrane.

View Article and Find Full Text PDF

Glands were the first type of tissues in which the permissive role of gap junctions in the cell-to-cell transfer of membrane-impermeant molecules was shown. During the 40 years that have followed this seminal finding, gap junctions have been documented in all types of multicellular secretory systems, whether of the exocrine, endocrine or pheromonal nature. Also, compelling evidence now indicates that gap junction-mediated coupling, and/or the connexin proteins per se, play significant regulatory roles in various aspects of gland functions, ranging from the biosynthesis, storage and release of a variety of secretory products, to the control of the growth and differentiation of secretory cells, and to the regulation of gland morphogenesis.

View Article and Find Full Text PDF