Minerals preserve the oldest, most persistent soil carbon, and mineral characteristics appear to play a critical role in the formation of soil organic matter (SOM) associations. To test the hypothesis that roots, and differences in carbon source and microbial communities, influence mineral SOM associations over short timescales, we incubated permeable mineral bags in soil microcosms with and without plants, inside a CO labeling chamber. Mineral bags contained quartz, ferrihydrite, kaolinite, or soil minerals isolated via density separation.
View Article and Find Full Text PDFMineral-associated microbes drive many critical soil processes, including mineral weathering, soil aggregation and cycling of mineral-sorbed organic matter. To investigate the interactions between soil minerals and microbes in the rhizosphere, we incubated three types of minerals (ferrihydrite, kaolinite and quartz) and a native soil mineral fraction near roots of a common Californian annual grass, Avena barbata, growing in its resident soil. We followed microbial colonization of these minerals for up to 2.
View Article and Find Full Text PDF