Publications by authors named "Rachel Netzband"

We propose a novel approach for building a classification/identification framework based on the full complement of RNA post-transcriptional modifications (rPTMs) expressed by an organism at basal conditions. The approach relies on advanced mass spectrometry techniques to characterize the products of exonuclease digestion of total RNA extracts. Sample profiles comprising identities and relative abundances of all detected rPTM were used to train and test the capabilities of different machine learning (ML) algorithms.

View Article and Find Full Text PDF

Epitranscriptomics, the study of posttranscriptional chemical moieties placed on RNA, has blossomed in recent years. This is due in part to the emergence of high-throughput detection methods as well as the burst of discoveries showing biological function of select chemical marks. RNA modifications have been shown to affect RNA structure, localization, and functions such as alternative splicing, stabilizing transcripts, nuclear export, cap-dependent and cap-independent translation, microRNA biogenesis and binding, RNA degradation, and immune regulation.

View Article and Find Full Text PDF

Flaviviruses limit the cell stress response by preventing the formation of stress granules (SGs) and modulate viral gene expression by subverting different proteins involved in the stress granule pathway. In this study, we investigated the formation of stress granules during Zika virus (ZIKV) infection and the role stress granule proteins play during the viral life cycle. Using immunofluorescence and confocal microscopy, we determined that ZIKV disrupted the formation of arsenite-induced stress granules and changed the subcellular distribution, but not the abundance or integrity, of stress granule proteins.

View Article and Find Full Text PDF

Chytridiomycosis and ranavirosis are 2 emerging infectious diseases that have caused significant global amphibian decline. Although both have received much scrutiny, little is known about interactions between the 2 causative agents Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv) at the individual host and population levels. We present the first longitudinal assessment of Bd, Rv, and co-infections of a temperate amphibian assemblage in North America.

View Article and Find Full Text PDF

More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) subverts the cellular DEAD-box RNA helicase DDX6 to promote virus infection. Using polysome gradient analysis and the subgenomic HCV Renilla reporter replicon genome, we determined that DDX6 does not affect HCV translation. Rather expression of the subgenomic HCV Renilla luciferase reporter at late times, as well as labeling of newly synthesized viral RNA with 4-thiouridine showed that DDX6 modulates replication.

View Article and Find Full Text PDF