Publications by authors named "Rachel Nachman"

Regulation of exocytosis by voltage-gated K(+) channels has classically been viewed as inhibition mediated by K(+) fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K(+) flux.

View Article and Find Full Text PDF

Cyclooxygenase (COX) enzymes are molecular targets of nonsteroidal anti-inflammatory drugs (NSAIDs), the most used medication worldwide. However, the COX enzymes are not the sole molecular targets of NSAIDs. Recently, we showed that two NSAIDs, diclofenac and meclofenamate, also act as openers of Kv7.

View Article and Find Full Text PDF

The antihypertensive and hypoglycemic effects of telmisartan, which has dual angiotensin II antagonist-PPAR-gamma agonist properties, was studied in Cohen-Rosenthal Diabetic Hypertensive rats (CRDH), a model in which hypertension, insulin resistance, and diabetes co-exist. CRDH, Cohen-diabetic rats (CDR), and SHR received telmisartan (3 mg/kg/day in drinking water) for five months. Telmisartan significantly lowered systolic and diastolic BP in SHR and CRDH, independent of body weight, and remained fairly constant in controls throughout the experiment.

View Article and Find Full Text PDF

The M-type K(+) current (M-current), encoded by Kv7.2/3 (KCNQ2/3) K(+) channels, plays a critical role in regulating neuronal excitability because it counteracts subthreshold depolarizations. Here we have characterized the functions of pre- and postsynaptic M-channels using a novel Kv7.

View Article and Find Full Text PDF

The voltage-dependent M-type potassium current (M-current) plays a major role in controlling brain excitability by stabilizing the membrane potential and acting as a brake for neuronal firing. The KCNQ2/Q3 heteromeric channel complex was identified as the molecular correlate of the M-current. Furthermore, the KCNQ2 and KCNQ3 channel alpha subunits are mutated in families with benign familial neonatal convulsions, a neonatal form of epilepsy.

View Article and Find Full Text PDF

Prenatal exposure to infection is associated with increased liability to schizophrenia, and it is believed that such an association is mediated by the maternal immune response, in particular, the proinflammatory cytokines released by the maternal immune system, which may disrupt fetal brain development. Impaired capacity to ignore irrelevant stimuli is one of the central deficits in schizophrenia, and is manifested, among others, in loss of latent inhibition (LI), a phenomenon whereby repeated inconsequential pre-exposure to a stimulus impairs its subsequent capacity to signal significant consequences. We tested the effects of prenatal immune activation induced by peripheral administration of the synthetic cytokine releaser polyriboinosinic-polyribocytidilic acid (poly I : C) to pregnant dams, on LI in juvenile and adult offspring.

View Article and Find Full Text PDF

Neuronal acetylcholine nicotinic receptors (nAChR) are composed of 12 subunits (alpha2-10, beta2-4), of which alpha3, alpha5, alpha7, beta2 and beta4 subunits are known to exist in the autonomic nervous system (ANS). alpha5 subunits possess unique biophysical and pharmacological properties. The present study was undertaken to examine the functional role and pharmacological properties of the nAChR alpha5 subunits in the ANS using mice lacking alpha5 nAChR subunits (alpha5-/-).

View Article and Find Full Text PDF