Objective: Herpes simplex virus-1 (HSV-1) is a common cause of viral encephalitis manifested by activation of the adrenocortical axis, fever and behavioral changes. We investigated the early effects of HSV-1 on constitutive (c) and inducible (i) nitric oxide synthase (NOS) activity in rat brain and in mixed glial cell culture. The effect of glucocorticoids (GCs) on NOS responses to HSV-1 was also determined.
View Article and Find Full Text PDFObjective: To investigate the therapeutic potential of mesenchymal stromal cells (MSCs) in the chronic model of experimental autoimmune encephalomyelitis (EAE).
Design: Mesenchymal stromal cells were obtained from the bone marrow of naïve C57BL and green fluorescent protein-transgenic mice and cultured with Eagle minimum essential medium/alpha medium after removal of adhering cells. Following 2 to 3 passages, MSCs were injected intraventricularly or intravenously into mice in which chronic EAE had been induced with myelin oligodendrocyte glycoprotein 35-55 peptide.
Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls.
View Article and Find Full Text PDFObjective: Intracerebroventricular or intravenous (IV) injection of neural precursor cells (NPCs) attenuates experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis. Although stem cell therapy was introduced initially for cell replacement, we examine here whether NPCs possess immunomodulatory effects.
Methods: We examined the effects of systemic administration of NPCs on central nervous system (CNS) inflammation in EAE and the interactions between NPCs and T cells in vitro and in vivo.
Recent studies have implicated the inflammatory process during experimental allergic encephalomyelitis (EAE) in triggering migration and differentiation of transplanted neural precursors cells (NPCs) into the inflamed white matter. The pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma are key factors in the pathogenesis of brain inflammation in EAE and were shown to enhance NPCs migration in vitro. As cell migration is dependent on extracellular matrix remodeling, involving proteolytic enzyme members of the matrix metalloproteinase (MMPs) family, we characterized the profile of expression of MMPs and their endogenous inhibitors (TIMPs) in rat NPCs, and evaluated the effects of TNF-alpha, IFN-gamma and IFN-beta, a clinically proven modulator of brain inflammation, on the expression of these molecules.
View Article and Find Full Text PDFStem cell transplantation was introduced as a mean of cell replacement therapy, but the mechanism by which it confers clinical improvement in experimental models of neurological diseases is not clear. Here, we transplanted neural precursor cells (NPCs) into the ventricles of mice at day 6 after induction of chronic experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Transplanted cells migrated into white matter tracts and attenuated the clinical course of disease.
View Article and Find Full Text PDFA key issue for therapeutic neural stem cell transplantation in chronic diseases is the long-term survival of transplanted cells in the brain. The normal adult central nervous system does not support the survival of transplanted cells. Presumably, the limited availability of trophic factors maintains the survival of resident cells but is insufficient for supporting the survival of transplanted cells.
View Article and Find Full Text PDFMultiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS). Activated coagulation factors are associated with inflammation and are elevated in the plasma of animals with EAE. Thrombin is a key coagulation factor and its major endogenous inhibitors are antithrombin III (ATIII) in the plasma and protease nexin 1 (PN-1) in the brain.
View Article and Find Full Text PDFBrain transplantation of neural precursor cells (NPCs) has been proposed to enhance CNS regeneration. As the pathogenesis of most acute CNS diseases involves an inflammatory component, we studied whether NPC transplantation affects brain inflammation. Newborn rat multipotential NPCs were transplanted intraventriculary into acute experimental allergic encephalomyelitis (EAE) rats, a model for disseminated brain inflammation.
View Article and Find Full Text PDFWe have recently shown that the inflammatory process during experimental allergic encephalomyelitis (EAE), the animal model of MS, attracts transplanted NPC migration into the inflamed white matter. Here we studied how the proinflammatory cytokines tumor necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) affect NPC growth, survival, differentiation, and migration. Newborn rat striatal NPCs were expanded in spheres as nestin+, PSA-NCAM+, NG2(-) cells, which differentiated into astrocytes, oligodendrocytes, and neurons.
View Article and Find Full Text PDFStem cell transplantation is being explored as a new paradigm for the treatment of demyelinating diseases. Magnetically labeled multipotential neural precursor cells were transplanted into the ventricles of rats with acute experimental allergic encephalomyelitis (EAE) and high-resolution (microscopic) MR images were obtained ex vivo. Migration patterns of live cells into periventricular white matter structures could be easily visualized, with a good correlation of the corresponding histopathology.
View Article and Find Full Text PDFTransplanted neural precursor cells remyelinate efficiently acutely demyelinated focal lesions. However, the clinical value of cell transplantation in a chronic, multifocal disease like multiple sclerosis will depend on the ability of transplanted cells to migrate to the multiple disease foci in the brain. Here, we expanded newborn rat neural precursor cells in spheres and transplanted them intracerebroventricularly or intrathecally in rats.
View Article and Find Full Text PDF