Publications by authors named "Rachel Menegaz"

Article Synopsis
  • Scientists are using 3D images more in biological research, so they need new ways to measure bones like the femur using computer programs instead of just tools like calipers.
  • The study develops clear methods for measuring bone length in three different software programs to ensure everyone can understand and follow them consistently for their work.
  • They provide guides and video tutorials to help users measure accurately, but they found that some programs are easier to use than others, suggesting that software could be improved for better clarity and efficiency.
View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a disorder of type I collagen characterized by abnormal bone formation. The OI craniofacial phenotype includes midfacial underdevelopment, as well as neurocranial changes (e.g.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI), a disorder of type I collagen, causes skeletal deformities as well as defects in dental tissues, which lead to increased enamel wear and smaller teeth with shorter roots. Mice with OI exhibit similar microstructural dentin changes, including reduced dentin tubule density and dentin cross-sectional area. However, the effects of these mutations on gross dental morphology and dental tissue volumes have never been characterized in the osteogenesis imperfecta murine (OIM) mouse model.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is known to cause hearing loss in ~60% of the affected human population. While OI-related pathologies have been studied in the middle ear, the development of cochlear pathologies is less well understood. In this study, we examine OI-related pathologies of the cochlea in a mouse model of OI to (1) document variation between OI and unaffected mice, and (2) assess the intrusion of the otic capsule onto the cochlea by analyzing differences in duct volumes.

View Article and Find Full Text PDF

Individuals with lower-limb amputations, many of whom have type 2 diabetes, experience impaired musculoskeletal health. This study: (1) compared residual and intact limbs of diabetic and non-diabetic post-mortem individuals with amputation to identify structures vulnerable to injury, and (2) compared findings to diabetic and healthy control groups to differentiate influences of amputation and diabetes on musculoskeletal health. Postmortem CT scans of three groups, ten individuals each, were included: (1) individuals with transtibial or transfemoral amputations, half with diabetes (2) diabetic controls, and (3) healthy controls.

View Article and Find Full Text PDF

Structural musculoskeletal adaptations following amputation, such as bone mineral density (BMD) or muscle architecture, are often overlooked despite their established contributions to gait rehabilitation and the development of adverse secondary physical conditions. The purpose of this review is to provide a summary of the existing literature investigating musculoskeletal adaptations in individuals with major lower-limb amputations to inform clinical practice and provide directions for future research. Google Scholar, PubMed, and Scopus were searched for original peer-reviewed studies that included individuals with transtibial or transfemoral amputations.

View Article and Find Full Text PDF

The rescue and rehabilitation of young fauna is of substantial importance to conservation. However, it has been suggested that incongruous diets offered in captive environments may alter craniofacial morphology and hinder the success of reintroduced animals. Despite these claims, to what extent dietary variation throughout ontogeny impacts intrapopulation cranial biomechanics has not yet been tested.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a skeletal disorder characterized by the impaired synthesis of type I collagen (Col1). This study tests the hypothesis that the craniofacial phenotype of severe OI is linked to an overall reduction in body size. 3D landmark data were collected from µCT scans of adult OIM and wild-type (WT) mice and used to calculate centroid sizes (CS) and interlandmark distances (ILDs).

View Article and Find Full Text PDF

The material properties of diets consumed by juvenile individuals are known to affect adult morphological outcomes. However, much of the current experimental knowledge regarding dietary effects on masticatory form is derived from studies in which individuals are fed a non-variable diet for the duration of their postweaning growth period. Thus, it remains unclear how intra-individual variation in diet, due to ontogenetic variation in feeding behaviors or seasonal resource fluctuations, affects the resulting adult morphology.

View Article and Find Full Text PDF

Like humans, domestic pigs are omnivorous and thus are a common model for human masticatory function. Prior attempts to characterize food-tooth interactions and jaw movements associated with mastication have been limited to aspects of the oral apparatus that are visible externally (with videography) and/or to 2D movements of oral structures (with monoplanar videofluoroscopy). We used XROMM, a 3D technique that combines CT-based morphology with biplanar videofluoroscopy, to quantify mandibular kinematics, tooth occlusion and mandibular condylar displacements within the temporomandibular joint (TMJ) during feeding.

View Article and Find Full Text PDF

Experimental analyses directly inform how an anatomical feature or complex functions during an organism's lifetime, which serves to increase the efficacy of comparative studies of living and fossil taxa. In the mammalian skull, food material properties and feeding behaviour have a pronounced influence on the development of the masticatory apparatus. Diet-related variation in loading magnitude and frequency induce a cascade of changes at the gross, tissue, cellular, protein and genetic levels, with such modelling and remodelling maintaining the integrity of oral structures vis-à-vis routine masticatory stresses.

View Article and Find Full Text PDF

In contrast to experimental evidence regarding the postorbital bar, postorbital septum, and browridge, there is exceedingly little evidence regarding the load-bearing nature of soft-tissue structures of the mammalian circumorbital region. This hinders our understanding of pronounced transformations during primate origins, in which euprimates evolved a postorbital bar from an ancestor with the primitive mammalian condition where only soft tissues spanned the lateral orbital margin between frontal bone and zygomatic arch. To address this significant gap, we investigated the postorbital microanatomy of rabbits subjected to long-term variation in diet-induced masticatory stresses.

View Article and Find Full Text PDF

The evolutionary significance of cranial form and robusticity in early Homo has been variously attributed to allometry, encephalization, metabolic factors, locomotor activity, and masticatory forces. However, the influence of such factors is variably understood. To evaluate the effect of masticatory loading on neurocranial form, sibling groups of weanling white rabbits were divided into two cohorts of 10 individuals each and raised on either a soft diet or a hard/tough diet for 16 weeks until subadulthood.

View Article and Find Full Text PDF

According to the "nocturnal visual predation hypothesis" (NVPH), the convergent eyes and orbits of primates result from selection for improved stereoscopic depth perception to facilitate manual capture of prey at night. Within primates, haplorhines share additional derived orbital morphologies, including a postorbital septum and greater orbital convergence than any other mammalian clade. While the homology and function of the haplorhine septum remain controversial, experimental data suggest that septa evolved to inhibit mechanical disturbance of the orbital contents by the anterior temporalis muscle during mastication.

View Article and Find Full Text PDF

Morphological variation related to differential loading is well known for many craniomandibular elements. Yet, the function of the hard palate, and in particular the manner in which cortical and trabecular bone of the palate respond to masticatory loads, remains more ambiguous. Here, experimental data are presented that address the naturalistic influence of biomechanical loading on the postweaning development and structure of the hard palate.

View Article and Find Full Text PDF

Knockout mice lacking myostatin (Mstn), a negative regulator of the growth of skeletal muscle, develop significant increases in the relative mass of masticatory muscles as well as the ability to generate higher maximal muscle forces. Wild-type and Mstn-deficient mice were compared to investigate the postnatal influence of elevated masticatory loads due to increased jaw-adductor and bite forces on the biomineralization of mandibular articular and cortical bone, the internal structure of the jaw joints, and the composition of temporomandibular joint (TMJ) articular cartilage. To provide an interspecific perspective on the long-term responses of mammalian jaw joints to altered loading conditions, the findings on mice were compared to similar data for growing rabbits subjected to long-term dietary manipulation.

View Article and Find Full Text PDF