An escalating trend of antipsychotic drug use in children with ADHD, disruptive behavior disorder, or mood disorders has raised concerns about the impact of these drugs on brain development. Since antipsychotics chiefly target dopamine receptors, it is important to assay the function of these receptors after early-life antipsychotic administration. Using rats as a model, we examined the effects of early-life risperidone, the most prescribed antipsychotic drug in children, on locomotor responses to the dopamine D/D receptor agonist, apomorphine, and the D/D receptor agonist, quinpirole.
View Article and Find Full Text PDFEarly-life administration of risperidone, the most widely used antipsychotic drug in children, leads to persistently elevated locomotor activity in adult rats. This study determined whether and when elevated locomotor activity emerges during developmental risperidone administration. Developing and adult rats were administered daily injections of risperidone (1.
View Article and Find Full Text PDFRisperidone is an antipsychotic drug that is approved for use in childhood psychiatric disorders such as autism. One concern regarding the use of this drug in pediatric populations is that it may interfere with social interactions that serve to nurture brain development. This study used rats to assess the impact of risperidone administration on maternal-offspring interactions and juvenile play fighting between cage mates.
View Article and Find Full Text PDFRisperidone is an antipsychotic drug approved for use in children, but little is known about the long-term effects of early-life risperidone treatment. In animals, prolonged risperidone administration during development increases forebrain dopamine receptor expression immediately upon the cessation of treatment. A series of experiments was performed to ascertain whether early-life risperidone administration altered locomotor activity, a behavior sensitive to dopamine receptor function, in adult rats.
View Article and Find Full Text PDF