Objective: To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics.
Research Design And Methods: Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected < 0.
Objective: Coronary artery disease (CAD) is a major challenge in patients with type 2 diabetes (T2D). Coronary computed tomography angiography (CCTA) provides a detailed anatomic map of the coronary circulation. Proteomics are increasingly used to improve diagnostic and therapeutic algorithms.
View Article and Find Full Text PDFBackground: Lung cancer screening using low-dose computed tomography reduces lung cancer mortality. However, the high false-positive rate, cost, and potential harms highlight the need for complementary biomarkers. We compared the diagnostic performance of modified aptamer-based protein biomarkers with Cyfra 21-1.
View Article and Find Full Text PDFBackground: CT screening for lung cancer is effective in reducing mortality, but there are areas of concern, including a positive predictive value of 4% and development of interval cancers. A blood test that could manage these limitations would be useful, but development of such tests has been impaired by variations in blood collection that may lead to poor reproducibility across populations.
Results: Blood-based proteomic profiles were generated with SOMAscan technology, which measured 1033 proteins.
Background: Malignant pleural mesothelioma (MM) is an aggressive, asbestos-related pulmonary cancer that is increasing in incidence. Because diagnosis is difficult and the disease is relatively rare, most patients present at a clinically advanced stage where possibility of cure is minimal. To improve surveillance and detection of MM in the high-risk population, we completed a series of clinical studies to develop a noninvasive test for early detection.
View Article and Find Full Text PDFLung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan) to compare protein expression signatures of non small-cell lung cancer (NSCLC) tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues.
View Article and Find Full Text PDFBackground: Lung cancer is the leading cause of cancer deaths worldwide. New diagnostics are needed to detect early stage lung cancer because it may be cured with surgery. However, most cases are diagnosed too late for curative surgery.
View Article and Find Full Text PDFBackground: The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.
Methodology/principal Findings: We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation.