Engineered cell-based therapies are uniquely capable of performing sophisticated therapeutic functions in vivo, and this strategy is yielding promising clinical benefits for treating cancer. In this review, we discuss key opportunities and challenges for engineering customized cellular functions using cell-based therapy for cancer as a representative case study. We examine the historical development of chimeric antigen receptor (CAR) therapies as an illustration of the engineering design cycle.
View Article and Find Full Text PDFEngineering mammalian cell-based devices that monitor and therapeutically modulate human physiology is a promising and emerging frontier in clinical synthetic biology. However, realizing this vision will require new technologies enabling engineered circuitry to sense and respond to physiologically relevant cues. No existing technology enables an engineered cell to sense exclusively extracellular ligands, including proteins and pathogens, without relying upon native cellular receptors or signal transduction pathways that may be subject to crosstalk with native cellular components.
View Article and Find Full Text PDFDensity functional theory and classical molecular dynamics simulations are used to investigate the vibrational spectra of caffeine and theophylline anhydrous and monohydrate molecules and those of their crystalline anhydrous and monohydrated states, with emphasis in the terahertz region of the spectra. To better understand the influence of water in the monohydrate crystal spectra, we analyze the vibrational spectra of water monomer, dimer, tetramer, and pentamer, and also those of liquid water at two different temperatures. In small water clusters, we observe the progressive addition of translational and librational modes to the terahertz region of the spectra.
View Article and Find Full Text PDF