Publications by authors named "Rachel M Dorin"

The functionalization with phosphotriesterase of poly(isoprene-b-styrene-b-4-vinylpyridine)-based nanoporous membranes fabricated by self-assembly and nonsolvent induced phase separation (SNIPS) is shown to enable dynamically responsive membranes capable of substrate-specific and localized gating response. Integration of the SNIPS process with macroporous nylon support layers yields mechanically robust textile-type films with high moisture vapor transport rates that display rapid and local order-of-magnitude modulation of permeability. The simplicity of the fabrication process that is compatible with large-area fabrication along with the versatility and efficacy of enzyme reactivity offers intriguing opportunities for engineered biomimetic materials that are tailored to respond to a complex range of external parameters, providing sensing, protection, and remediation capabilities.

View Article and Find Full Text PDF

Graded porous inorganic materials directed by macromolecular self-assembly are expected to offer unique structural platforms relative to conventional porous inorganic materials. Their preparation to date remains a challenge, however, based on the sparsity of viable synthetic self-assembly pathways to control structural asymmetry. Here we demonstrate the fabrication of graded porous carbon, metal, and metal oxide film structures from self-assembled block copolymer templates by using various backfilling techniques in combination with thermal treatments for template removal and chemical transformations.

View Article and Find Full Text PDF

A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs.

View Article and Find Full Text PDF

Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene--(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and ,-dimethylformamide, and the triblock terpolymer poly(isoprene--styrene--(4-vinyl)pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure.

View Article and Find Full Text PDF

Despite considerable efforts toward fabricating ordered, water-permeable, mesoporous films from block copolymers, fine control over pore dimensions, structural characteristics, and mechanical behavior of graded structures remains a major challenge. To this end, we describe the fabrication and performance characteristics of graded mesoporous and hybrid films derived from the newly synthesized triblock terpolymer, poly(isoprene-b-styrene-b-4-vinylpyridine). A unique morphology, unachievable in diblock copolymer systems, with enhanced mechanical integrity is evidenced.

View Article and Find Full Text PDF

Novel platinum nanowheels were synthesized by the reduction of aqueous platinum complex with ascorbic acid in the presence of disk-like bicelles. The platinum nanowheels possess thickened centers and flared edges that are connected by dendritic platinum nanosheets. This structural complexity can be attributed to the inhomogeneous micro-environment of the templating bicelles consisting of a central bi-layer region and a high curvature rim.

View Article and Find Full Text PDF
Article Synopsis
  • Under electron-beam irradiation, dendritic platinum nanosheets transition into metastable "holey" nanosheets, which feature nanoscale holes.
  • Monte Carlo simulations align closely with electron microscope images, illustrating the structural transformation and ripening process of these sheets.
  • These holey platinum nanosheets demonstrate enhanced durability in electrocatalytic reactions, attributed to their stability from the presence of persistent critical-sized holes.
View Article and Find Full Text PDF

Disk-like surfactant bicelles provide a unique meso-structured reaction environment for templating the wet-chemical reduction of platinum(II) salt by ascorbic acid to produce platinum nanowheels. The Pt wheels are 496 +/-55 nm in diameter and possess thickened centers and radial dendritic nanosheets (about 2-nm in thickness) culminating in flared dendritic rims. The structural features of the platinum wheels arise from confined growth of platinum within the bilayer that is also limited at edges of the bicelles.

View Article and Find Full Text PDF

Hollow platinum nanospheres that are porous and have uniform shell thickness are prepared by templating platinum growth on polystyrene beads with an adsorbed porphyrin photocatalyst irradiated by visible light.

View Article and Find Full Text PDF

Platinum nanowire networks have been synthesized by chemical reduction of a platinum complex using sodium borohydride in the presence of a soft template formed by cetyltrimethylammonium bromide in a two-phase water-chloroform system. The interconnected polycrystalline nanowires possess the highest surface area (53 +/- 1 m2/g) and electroactive surface area (32.4 +/- 3.

View Article and Find Full Text PDF