Publications by authors named "Rachel Lokanga"

A long CGG-repeat tract in the gene induces the epigenetic silencing that causes fragile X syndrome (FXS). Epigenetic changes include H4K20 trimethylation, a heterochromatic modification frequently implicated in transcriptional silencing. Here, we report that treatment with A-196, an inhibitor of SUV420H1/H2, the enzymes responsible for H4K20 di-/trimethylation, does not affect transcription, but does result in increased chromosomal duplications.

View Article and Find Full Text PDF

The human genome has many chromosomal regions that are fragile, demonstrating chromatin breaks, gaps, or constrictions on exposure to replication stress. Common fragile sites (CFSs) are found widely distributed in the population, with the largest subset of these sites being induced by aphidicolin (APH). Other fragile sites are only found in a subset of the population.

View Article and Find Full Text PDF
Article Synopsis
  • - A study involving high-coverage whole-genome sequencing of 232 lung cancer cases in never smokers (LCINS) identified three distinct subtypes based on genetic alterations, primarily involving copy number changes.
  • - The dominant subtype, termed "piano," is characterized by unique genetic features like UBA1 mutations and low mutational burden, indicating stem cell-like traits and a slower tumor growth rate compared to typical lung cancer in smokers.
  • - Notably, no significant tobacco-related mutations were found, even in patients exposed to secondhand smoke, and certain genetic changes were linked to increased mortality, suggesting potential for tailored treatment strategies for LCINS.
View Article and Find Full Text PDF

Background: Many carcinomas have recurrent chromosomal aneuploidies specific to the tissue of tumor origin. The reason for this specificity is not completely understood.

Methods: In this study, we looked at the frequency of chromosomal arm gains and losses in different cancer types from the The Cancer Genome Atlas (TCGA) and compared them to the mean gene expression of each chromosome arm in corresponding normal tissues of origin from the Genotype-Tissue Expression (GTEx) database, in addition to the distribution of tissue-specific oncogenes and tumor suppressors on different chromosome arms.

View Article and Find Full Text PDF

The fragile X-related disorders result from expansion of a CGG/CCG microsatellite in the 5' UTR of the FMR1 gene. We have previously demonstrated that the MSH2/MSH3 complex, MutSβ, that is important for mismatch repair, is essential for almost all expansions in a mouse model of these disorders. Here we show that the MSH2/MSH6 complex, MutSα also contributes to the production of both germ line and somatic expansions as evidenced by the reduction in the number of expansions observed in Msh6-/- mice.

View Article and Find Full Text PDF

The Fragile X-related disorders (FXDs) are members of the Repeat Expansion Diseases, a group of human genetic conditions resulting from expansion of a specific tandem repeat. The FXDs result from expansion of a CGG/CCG repeat tract in the 5' UTR of the FMR1 gene. While expansion in a FXD mouse model is known to require some mismatch repair (MMR) proteins, our previous work and work in mouse models of another Repeat Expansion Disease show that early events in the base excision repair (BER) pathway play a role in the expansion process.

View Article and Find Full Text PDF

The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5' UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones.

View Article and Find Full Text PDF

Fragile X-associated tremor and ataxia syndrome, Fragile X-associated primary ovarian insufficiency, and Fragile X syndrome are Repeat Expansion Diseases caused by expansion of a CGG•CCG-repeat microsatellite in the 5 UTR of the FMR1 gene. To help understand the expansion mechanism responsible for these disorders, we have crossed mice containing∼147 CGG•CCG repeats in the endogenous murine Fmr1 gene with mice containing a null mutation in the gene encoding the mismatch repair protein MSH2. MSH2 mutations are associated with elevated levels of generalized microsatellite instability.

View Article and Find Full Text PDF

Repeat expansion diseases result from expansion of a specific tandem repeat. The three fragile X-related disorders (FXDs) arise from germline expansions of a CGG•CCG repeat tract in the 5' UTR (untranslated region) of the fragile X mental retardation 1 (FMR1) gene. We show here that in addition to germline expansion, expansion also occurs in the somatic cells of both mice and humans carriers of premutation alleles.

View Article and Find Full Text PDF

The Fragile X-associated disorders (FXDs) and Friedreich ataxia (FRDA) are genetic conditions resulting from expansion of a trinucleotide repeat in a region of the affected gene that is transcribed but not translated. In the case of the FXDs, pathology results from expansion of CGG•CCG-repeat tract in the 5' UTR of the FMR1 gene, while pathology in FRDA results from expansion of a GAA•TTC-repeat in intron 1 of the FXN gene. Expansion occurs during gametogenesis or early embryogenesis by a mechanism that is not well understood.

View Article and Find Full Text PDF