Kallikreins (KLKs) are a family of 15 secreted serine proteases with emerging roles in neurologic diseases. To illuminate their contributions to the pathophysiology of spinal cord injury (SCI), we evaluated acute through chronic changes in the immunohistochemical appearance of 6 KLKs (KLK1, KLK5, KLK6, KLK7, KLK8, and KLK9) in postmortem human traumatic SCI cases, quantified their RNA expression levels in experimental murine SCI, and assessed the impact of recombinant forms of each enzyme toward murine cortical neurons in vitro. Temporally and spatially distinct changes in KLK expression were observed with partially overlapping patterns between human and murine SCI, including peak elevations (or reductions) during the acute and subacute periods.
View Article and Find Full Text PDFTissue kallikrein KLK1 and the kallikrein-related peptidases KLK2-15 are a subfamily of serine proteases that have defined or proposed roles in a range of central nervous system (CNS) and non-CNS pathologies. To further understand their potential activity in multiple sclerosis (MS), serum levels of KLK1, 6, 7, 8 and 10 were determined in 35 MS patients and 62 controls by quantitative fluorometric ELISA. Serum levels were then correlated with Expanded Disability Status Scale (EDSS) scores determined at the time of serological sampling or at last clinical follow-up.
View Article and Find Full Text PDFIncreased stride-to-stride variability during walking characterizes gait instability and predicts falling in older adults. Walking while performing cognitive tasks (dual task walking) is also associated with increased risk of falling. The purpose of the study was to examine whether gait velocity and stride-to-stride variability in gait velocity differ in older adults compared with middle-aged and younger adults during normal and dual task walking conditions.
View Article and Find Full Text PDF