Nanoparticles (NPs) designed for biomedical applications are coated with protein-repellent polymers. Here, we examine the penetration of rodlike NPs with narrow size distributions ( = 170 nm, = 12 nm) into multicellular tumor spheroids prepared from two human cancer cell lines. Two types of NPs with different core materials [polyferrocenylsilane and cellulose nanocrystals (CNC)] were coated with a dense brush of poly(oligoethyleneglycol methacrylate) (POEGMA), while a second CNC NP sample was coated with a linear polyethylene glycol (PEG) brush.
View Article and Find Full Text PDFWe are interested in developing lanthanide nanoparticles (LnNPs) of the general formula NaLnF as high-sensitivity reagents for mass cytometry. These LnNPs must be coated to provide colloidal stability in aqueous buffer and functionality for detecting cellular biomarkers. Lipid bilayer coatings are a promising approach, but one requires an analytical technique to enable characterization of the NP coating composition as opposed to the composition of the lipid formulation used in the coating process.
View Article and Find Full Text PDFElongated colloidal nanoparticles (NPs) have significant potential for drug delivery and imaging applications in cancer therapy, but progress depends on developing a deeper understanding of how their physicochemical properties affect their interactions with cells and with tumors. Cellulose nanocrystals (CNCs) are biocompatible, rodlike colloids that are broadly surface-functionalizable, making them interesting as modular drug carriers. In this report, we describe the attachment of a statistical copolymer containing oligoethylene glycol methacrylate (OEGMA; ≈ 500 Da) and small amounts of aminopropylmethacrylamide (APMA) to CNCs.
View Article and Find Full Text PDFElongated nanoparticles have recently been shown to have distinct advantages over their spherical counterparts in drug delivery applications. Cellulose nanocrystals (CNCs) have rodlike shapes in nature and have demonstrated biocompatibility in a variety of mammalian cell lines. In this report, CNCs are put forward as a modular platform for the production of multifunctional rod-shaped nanoparticles for cancer imaging and therapy.
View Article and Find Full Text PDFLigand-free stellated gold nanoparticles (AuStNPs) with well-defined octahedral (O(h)) and icosahedral (I(h)) core symmetries were prepared using hydrogen peroxide as a reducing agent. Only three reagents: gold precursor (HAuCl4), H2O2 and NaOH were required to form colloidally and chemically stable AuStNPs with a zeta-potential between -55 and -40 mV indicative of excellent charge stabilization. The size and degree of stellation of AuStNPs can be controlled by several synthetic parameters so that the localized surface plasmon resonance (LSPR) can be varied from ca.
View Article and Find Full Text PDF