Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted.
View Article and Find Full Text PDFIntroduction: Conventional bone imaging methods primarily use X-ray techniques to assess bone mineral density (BMD), focusing exclusively on the mineral phase. This approach lacks information about the organic phase and bone water content, resulting in an incomplete evaluation of bone health. Recent research highlights the potential of ultrashort echo time magnetic resonance imaging (UTE MRI) to measure cortical porosity and estimate BMD based on signal intensity.
View Article and Find Full Text PDFPurpose Of Review: This review summarizes recent advances in the assessment of bone quality using non-X-ray techniques.
Recent Findings: Quantitative ultrasound (QUS) provides multiple measurements of bone characteristics based on the propagation of sound through bone, the attenuation of that sound, and different processing techniques. QUS parameters and model predictions based on backscattered signals can discriminate non-fracture from fracture cases with accuracy comparable to standard bone mineral density (BMD).
Clin J Am Soc Nephrol
November 2023
Raloxifene (RAL) reduces clinical fracture risk despite modest effects on bone mass and density. This reduction in fracture risk may be due to improved material level-mechanical properties through a non-cell mediated increase in bone hydration. Synthetic salmon calcitonin (CAL) has also demonstrated efficacy in reducing fracture risk with only modest bone mass and density improvements.
View Article and Find Full Text PDFWater constitutes roughly a quarter of the cortical bone by volume yet can greatly influence mechanical properties and tissue quality. There is a growing appreciation for how water can dynamically change due to age, disease, and treatment. A key emerging area related to bone mechanical and tissue properties lies in differentiating the role of water in its four different compartments, including free/pore water, water loosely bound at the collagen/mineral interfaces, water tightly bound within collagen triple helices, and structural water within the mineral.
View Article and Find Full Text PDFBone is a composite biomaterial of mineral crystals, organic matrix, and water. Each contributes to bone quality and strength and may change independently, or together, with disease progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based approaches to measure bone mineral density (BMD) which is unable to fully characterize bone strength and may not adequately predict fracture risk.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2021
An inexpensive, accurate focused ultrasound stereotactic targeting method guided by pretreatment magnetic resonance imaging (MRI) images for murine brain models is presented. An uncertainty of each sub-component of the stereotactic system was analyzed. The entire system was calibrated using clot phantoms.
View Article and Find Full Text PDFRationale And Objectives: This study aimed to evaluate the accuracy of an automated method for segmentation and T2 mapping of the medial meniscus (MM) and lateral meniscus (LM) in clinical magnetic resonance images from patients with acute knee injury.
Materials And Methods: Eighty patients scheduled for surgery of an anterior cruciate ligament or meniscal injury underwent magnetic resonance imaging of the knee (multiplanar two-dimensional [2D] turbo spin echo [TSE] or three-dimensional [3D]-TSE examinations, T2 mapping). Each meniscus was automatically segmented from the 2D-TSE (composite volume) or 3D-TSE images, auto-partitioned into anterior, mid, and posterior regions, and co-registered onto the T2 maps.
Background: Quantitative magnetic resonance imaging (MRI) techniques, such as T2 and T2 star (T2*) mapping, have been used to evaluate ligamentous tissue in vitro and to identify significant changes in structural integrity of a healing ligament. These studies lay the foundation for a clinical study that uses quantitative mapping to evaluate ligaments in vivo, particularly the posterior cruciate ligament (PCL). To establish quantitative mapping as a clinical tool for identifying and evaluating chronic or acute PCL injuries, T2 and T2* values first must be determined for an asymptomatic population.
View Article and Find Full Text PDFObjective: A standardized definition of normative T2 values across the articular surface of the hip must be defined in order to fully understand T2 values for detecting early degeneration. Therefore, in this article, we seek to lay foundational methodology for reproducible quantitative evaluation of hip cartilage damage using T2 mapping to determine the normative T2 values in asymptomatic individuals.
Design: Nineteen prospectively enrolled asymptomatic volunteers (age 18-35 years, males 10, females 9, alpha angle 49.